Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13131))

  • 1271 Accesses

Abstract

Coronary artery centerlines extraction from cardiac CT angiography (CCTA) is an important but challenging task. The popular U-net based coronary artery segmentation and thinning approaches rely on large number of labeled data and tend to produce noisy results. We proposed a graph convolutional network (GCN) for refining noisy centerlines outputted by U-net and developed a coronary artery tree synthesis approach for GCN pretraining. Experiments demonstrate that both modules led to improved performance.

This work was supported in part by the National Natural Science Foundation of China under Grants 61976121 and 82071921.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leipsic, J., et al.: SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the society of cardiovascular computed tomography guidelines committee. J. Cardiovasc. Comput. Tomogr. 8(5), 342–358 (2014)

    Article  Google Scholar 

  2. Marquering, H.A., Dijkstra, J., de Koning, P.J.H., Stoel, B.C., Reiber, J.H.C.: Towards quantitative analysis of coronary CTA. Int. J. Card. Imaging 21(1), 73–84 (2005)

    Article  Google Scholar 

  3. Krissian, K., Bogunovic, H., Pozo, J., Villa-Uriol, M., Frangi, A.: Minimally interactive knowledge-based coronary tracking in CTA using a minimal cost path. Insight J. 1 (2008)

    Google Scholar 

  4. Guo, Z., et al.: DeepCenterline: a multi-task fully convolutional network for centerline extraction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 441–453. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_34

    Chapter  Google Scholar 

  5. Zhou, C., et al.: Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput. Med. Imaging Graph. 36(1), 1–10 (2012)

    Article  Google Scholar 

  6. Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: Adaptive particle filtering for coronary artery segmentation from 3D CT angiograms. Comput. Vis. Image Underst. 151, 29–46 (2016)

    Article  Google Scholar 

  7. Tetteh, G., et al.: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Front. Neurosci. 14, 1285 (2020)

    Article  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Wang, Y., et al.: Deep distance transform for tubular structure segmentation in CT scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3833–3842 (2020)

    Google Scholar 

  10. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  11. Wang, G., Laga, H., Xie, N., Jia, J., Tabia, H.: The shape space of 3D botanical tree models. ACM Trans. Graph. (TOG) 37(1), 1–18 (2018)

    Article  Google Scholar 

  12. Isensee, F., Jäger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 (2019)

  13. Schaap, M., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)

    Article  Google Scholar 

  14. Selvan, R., et al.: Graph refinement based airway extraction using mean-field networks and graph neural networks. Med. Image Anal. 64, 101751 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Zhang, Y., Feng, J., Yang, E., Qin, L., Zhou, J. (2022). Coronary Artery Centerline Refinement Using GCN Trained with Synthetic Data. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93722-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93721-8

  • Online ISBN: 978-3-030-93722-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics