Skip to main content

An Evaluation of Segmentation Techniques for Covid-19 Identification in Chest X-Ray

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2021)

Abstract

COVID-19 is a highly contagious disease caused by the SARS-CoV-2 virus. Due to its high impact on society, several efforts have been made to design practical ways to support COVID-19 diagnosis. In this context, automated solutions based on chest x-rays (CXR) images and deep learning are among the popular ones. Although these techniques achieved exciting results in the literature, the use of regions that do not support pneumonia diagnosis, i.e., regions outside the lung area, may bias the recognition model. A strategy to avoid this issue is to use segmentation techniques to isolate the lung area before the classification process. In this work, we investigate the impact of three CNN segmentation architectures on COVID-19 identification: U-Net, MultiResUnet, and BCDU-NET. We also investigate which portions of the CXR most influence each model’s predictions, using Explainable Artificial Intelligence. The BCDU-NET architecture achieved a Jaccard Index of 0.91 and a Dice Coefficient of 0.95. In the best scenario, lung segmentation improved the COVID-19 identification F1-Score by about 6.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.worldometers.info/coronavirus/.

  2. 2.

    https://github.com/v7labs/covid-19-xray-dataset.

  3. 3.

    https://github.com/ieee8023/covid-chestxray-dataset.

References

  1. Aboughazala, L., Mohammed, K.K.: Automated detection of Covid-19 coronavirus cases using deep neural networks with X-ray images. Al-Azhar Univ. J. Virus Res. Stud. 2 (2020)

    Google Scholar 

  2. Acobi, A., Chung, M., Bernheim, A., Eber, C.: Portable chest x-ray in coronavirus disease-19 (COVID-19): a pictorial review. Clin. Imaging 64, 35–42 (2020)

    Article  Google Scholar 

  3. Alwarasneh, N., Chow, Y.S.S., Yan, S.T.M., Lim, C.H.: Bridging explainable machine vision in CAD systems for lung cancer detection. In: Chan, C.S., et al. (eds.) ICIRA 2020. LNCS (LNAI), vol. 12595, pp. 254–269. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66645-3_22

    Chapter  Google Scholar 

  4. Yao, A.D., Cheng, D.L., Pan, I., Kitamura, F.: Deep learning in neuroradiology: a systematic review of current algorithms and approaches for the new wave of imaging technology. Radiol. Artif. Intell. 2(2), e19002 (2020)

    Article  Google Scholar 

  5. Asif, S., Wenhui, Y., Jin, H., Jinhai, S.: Classification of COVID-19 from Chest X-ray images using Deep Convolutional Neural Networks. Cold Spring Harbor Laboratory Press (2020)

    Google Scholar 

  6. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-Net with densley connected convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2019)

    Google Scholar 

  7. Baltruschat, I., et al.: When Does Bone Suppression And Lung Field Segmentation Improve Chest X-Ray Disease Classification?, pp. 1362–1366 (2019)

    Google Scholar 

  8. Beers, F.V.: Using intersection over union loss to improve binary image segmentation (2018)

    Google Scholar 

  9. Brunese, L., et al.: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Programs Biomed. 196, 105608 (2020)

    Article  Google Scholar 

  10. Candemir, S., Antani, S.: A review on lung boundary detection in chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 14(4), 563–576 (2019)

    Article  Google Scholar 

  11. Candemirs, J.S., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2014)

    Article  Google Scholar 

  12. Cohen, J.P., et al.: COVID-19 Image Data Collection: Prospective Predictions are the Future. arXiv:2006.11988 [Cs, Eess, q-Bio], December 2020

  13. Eelbode, T., et al.: Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index. IEEE Trans. Med. Imaging 39(11), 3679–3690 (2020)

    Article  Google Scholar 

  14. Gordienko, Y., et al.: Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 638–647. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_63

    Chapter  Google Scholar 

  15. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  16. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing, Birmingham (2017)

    Google Scholar 

  17. He, K., et al.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [Cs], December 2015

  18. Holzinger, A., Biemann, C., Pattichis, C., Kell, D.: What do we need to build explainable AI systems for the medical domain? arXiv:1712.09923 (2017)

  19. Ibtehaz, N., Rahamn, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. CoRR, abs/1902.04049 (2019)

    Google Scholar 

  20. Irvin, J., et al.: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison (2019)

    Google Scholar 

  21. Jaeger, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014)

    Article  Google Scholar 

  22. Kong, W., Agarwal, P.P.: Chest imaging appearance of COVID-19 infection. Radiol. Cardiothorac. Imaging 2(1), e200028 (2020)

    Article  Google Scholar 

  23. Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., Soufi, G.J.: Deep-covid: predicting covid-19 from chest x-ray images using deep transfer learning. Med. Image Anal. 65, 101794 (2020). ISSN 1361-8415

    Article  Google Scholar 

  24. Narin, A., Kaya, C., Pamuk, Z.: Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks (2020)

    Google Scholar 

  25. Joarder, R., Crundwell, N.: Chest X-Ray in Clinical Practice. Springer, London (2009). https://doi.org/10.1007/978-1-84882-099-9

    Book  Google Scholar 

  26. Pereira, R.M., Bertolini, D., Teixeira, L.O., Silla, C.N., Jr., Costa, Y.M.G.: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Programs Biomed. 194, 105532 (2020)

    Article  Google Scholar 

  27. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA Computing Machinery, (KDD 2016), pp. 1135–1144 (2016). ISBN 9781450342322

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)

    Google Scholar 

  29. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747 (2016)

    Google Scholar 

  30. Self, W., Courtney, D., Mcnaughton, C., Wunderink, R., Kline, J.: High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am. J. Emerg. Med. 31, 401–405 (2012)

    Google Scholar 

  31. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019)

    Article  Google Scholar 

  32. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  33. Shiraishi, J., et al.: Development of a digital image data set for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174, 71–74 (2000)

    Article  Google Scholar 

  34. Stirenko, S., et al.: Chest X-Ray Analysis of Tuberculosis by Deep Learning with Segmentation and Augmentation (2018)

    Google Scholar 

  35. Teixeira, L.O., et al.: Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images. arXiv:2009.09780 (2020)

  36. Vorontsov, I.E., Kulakovskiy, I.V., Makeev, V.J.: Jaccard index based similarity measure to compare transcription factor binding site models. Algorithms Mol. Biol. 8, 23 (2013)

    Article  Google Scholar 

  37. Wang, L., Lin, Z.Q., Wong, A.: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  38. Gu, X., Pan, L., Liang, H., Yang, R.: Classification of bacterial and viral childhood pneumonia using deep learning in chest radiography. In: Proceedings of the 3rd International Conference on Multimedia and Image Processing (ICMIP 2018), pp. 88–93. ACM, New York (2018)

    Google Scholar 

Download references

Acknowledgement

This research has been partly supported by the National Council for Scientific and Technological Development (CNPq) grant 312672/2020-9 for the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batista, A.R., Bertolini, D., Costa, Y.M.G., Pereira, L.F.M., Pereira, R.M., Teixeira, L.O. (2021). An Evaluation of Segmentation Techniques for Covid-19 Identification in Chest X-Ray. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2021. Lecture Notes in Computer Science(), vol 12702. Springer, Cham. https://doi.org/10.1007/978-3-030-93420-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93420-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93419-4

  • Online ISBN: 978-3-030-93420-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics