Skip to main content

Object Delineation by Iterative Dynamic Trees

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12702))

Included in the following conference series:

  • 708 Accesses

Abstract

While semantic segmentation networks can approximate well the shape of objects (e.g., people, chairs, tables) in images, boundary adherence is still inaccurate. We present an unsupervised image segmentation approach, named Iterative Dynamic Trees (IDT), for improved object delineation. We intend to combine IDT and semantic segmentation networks in future work towards improving object segmentation. For a given number of objects in an image graph, the IDT algorithm (i) estimates one seed per object (and background), (ii) delineates each object as one optimum-path tree, (iii) improves seed estimation and repeats steps (ii)–(iii) for a preset number of iterations or until the seed set convergence is achieved. Then, (iv) the optimum-path forest found with the lowest total cost in the loop (ii)–(iii) is selected as final segmentation. The IDT algorithm is a new method based on the Iterative Spanning Forest (ISF) framework, in which the number of superpixels is drastically reduced to the number of objects. It adds step (iv) and exploits, for the first time, dynamic arc-weight estimation in ISF for unsupervised object segmentation. We show that IDT can outperform its counterparts in two image datasets – a result that motivates its combination with semantic segmentation networks in future work.

This work was supported in part by grants from: Brazilian National Council for Scientific and Technological Development (CNPq),  #313329/2020-6,  #309627/2017-6,  #303808/2018-7, São Paulo Research Foundation (Fapesp),  #2020/09691-0,  #2018/26434-0,  #2014/12236-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2007

    Google Scholar 

  3. Belém, F.C., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation using dynamic and iterative spanning forest. IEEE Signal Process. Lett. 27, 1440–1444 (2020)

    Article  Google Scholar 

  4. Bragantini, J., Martins, S.B., Castelo-Fernandez, C., Falcão, A.X.: Graph-based image segmentation using dynamic trees. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 470–478. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_55

    Chapter  Google Scholar 

  5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  6. Fahad, A., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg. Top. Comput. 2(3), 267–279 (2014)

    Article  Google Scholar 

  7. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  8. Galvão, F.L., Guimarães, S.J.F., Falcão, A.X.: Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recognit. 108, 107532 (2020)

    Article  Google Scholar 

  9. Hafiz, A.M., Bhat, G.M.: A survey on instance segmentation: state of the art. Int. J. Multimedia Inf. Retr. 1–19 (2020)

    Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  11. Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: F-BRS: rethinking backpropagating refinement for interactive segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8620–8629 (2020)

    Google Scholar 

  12. Soor, S., Challa, A., Danda, S., Daya Sagar, B., Najman, L.: Iterated watersheds, a connected variation of k-means for clustering GIS data. IEEE Trans. Emerg. Top. Comput. (2019)

    Google Scholar 

  13. Sultana, F., Sufian, A., Dutta, P.: Evolution of image segmentation using deep convolutional neural network: a survey. Knowl.-Based Syst. 201–202, 106062 (2020)

    Article  Google Scholar 

  14. Vargas-Muñoz, J.E., Chowdhury, A.S., Alexandre, E.B., Galvão, F.L., Vechiatto Miranda, P.A., Falcão, A.X.: An iterative spanning forest framework for superpixel segmentation. IEEE Trans. Image Process. 28(7), 3477–3489 (2019)

    Article  MathSciNet  Google Scholar 

  15. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aparco-Cardenas, D., de Rezende, P.J., Falcão, A.X. (2021). Object Delineation by Iterative Dynamic Trees. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2021. Lecture Notes in Computer Science(), vol 12702. Springer, Cham. https://doi.org/10.1007/978-3-030-93420-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93420-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93419-4

  • Online ISBN: 978-3-030-93420-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics