Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13095))

Included in the following conference series:

Abstract

A 6D human pose estimation method is studied to assist autonomous UAV control in human environments. As autonomous robots/UAVs become increasingly prevalent in the future workspace, autonomous robots must detect/estimate human movement and predict their trajectory to plan a safe motion path. Our method utilize a deep Convolutional Neural Network to calculate a 3D torso bounding box to determine the location and orientation of human objects. The training uses a loss function that includes both 3D angle and translation errors. The trained model delivers <10-degree angular error and outperforms a reference method based on RSN.

The project is supported by NSF award 1818655, Raytheon Space and Intelligence, and NEEC award N001742110011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munea, T.L., Jembre, Y.Z., Weldegebriel, H.T., Chen, L., Huang, C., Yang, C.: The progress of human pose estimation: a survey and taxonomy of models applied in 2D human pose estimation. IEEE Access 8, 133330–133348 (2020). https://doi.org/10.1109/ACCESS.2020.3010248

    Article  Google Scholar 

  2. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR (2019)

    Google Scholar 

  3. Laird, J.E., et al.: A standard model for the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics, AI Magazine 38(4), 13–26 (2017)

    Google Scholar 

  4. 3D Mapping & Navigation. https://www.wilselby.com/research/ros-integration/3d-mapping-navigation/

  5. Tekin, B., et al: Real-time seamless single shot 6D object pose prediction. In: CVPR (2018)

    Google Scholar 

  6. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

  7. Sünderhauf, N., Protzel, P.: Towards a robust back-end for pose graph SLAM. In: Proceedings of International Conference on Robotics and Automation, pp. 1254–1261 (2012)

    Google Scholar 

  8. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  9. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.2983686

    Article  Google Scholar 

  10. Thrun, S., Montemerlo, M.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25, 403–429 (2006)

    Article  Google Scholar 

  11. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32, 1309–1332 (2016)

    Article  Google Scholar 

  12. Cai, Y., et al.: Learning delicate local representations for multi-person pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 455–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_27

  13. MMPose Contributors: OpenMMLab Pose Estimation Toolbox and Benchmark (2020). https://github.com/open-mmlab/mmpose

  14. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Choi, W., Shtau, I., Ferro, T., Wu, Z., Trott, C. (2021). Human Pose Estimation in UAV-Human Workspace. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. HCII 2021. Lecture Notes in Computer Science(), vol 13095. Springer, Cham. https://doi.org/10.1007/978-3-030-90963-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90963-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90962-8

  • Online ISBN: 978-3-030-90963-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics