Skip to main content

Probabilistic Technique for Monitoring Damage and Cracking of Concrete

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) (AI2SD 2020)

Abstract

The monitoring of concrete structures with the acoustic emissions (AE) technique allows the detection of damage onset and growth. In this paper, the source location is determined by Unscented Kalman Filter (UKF) algorithm which makes use of AE signals arrival time recorded by sensors placed at the surface of the material and wave velocity known. This algorithm take into account uncertainty in time of arrival (TOA) measurements using continuous wavelet transform (CWT) analysis. The width of the fracture process zone (FPZ) was estimated from results of AE source location. The accuracy of AE location is then evaluated by comparing the results obtained with the proposed AE technique and the real crack profile. Measurements help appreciate robustness of the proposed approach with consequent potential applications in structural health monitoring of industrial parts and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hadjab, H., Thimus, J.-Fr.: Fracture process zone in notched concrete beams treated by using acoustic emission. NDT, vol. 12 (2004)

    Google Scholar 

  2. Saliba, J., Loukili, A., Grondin, F., Regoin, J.-P.: Influence of basic creep on cracking of concrete shown by the Acoustic emission technique. Mater. Struct. 45, 1389–1401 (2012)

    Article  Google Scholar 

  3. Jankowski, L.J.: Formation of the fracture process zone in concrete. Eng. Fract. Mech. 36(2), 245–253 (1990). https://doi.org/10.1016/0013-7944(90)90005-2

    Article  Google Scholar 

  4. Shah, S.P.: Experimental methods for determining fracture process zone and fracture parameters. Eng. Fract. Mech. 35(1–3), 3–14 (1990). https://doi.org/10.1016/0013-7944(90)90178-j

    Article  Google Scholar 

  5. Sbartaï, Z.M., Saïdoun, K.: Evaluation de l’endommagement mécanique des bétons par émission acoustique. Annales du Bâtiment et des Travaux Publics, Janvier-Mars (2014)

    Google Scholar 

  6. Ciampa, F., Meo, M.: Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique. Smart Mater. Struct. 19(4), 045027 (2010). https://doi.org/10.1088/0964-1726/19/4/045027

    Article  Google Scholar 

  7. Tobias, A.: Acoustic-emission source location in two dimensions by an array of three sensors. Non Destruct. Test. 9(1), 9–12 (1976). https://doi.org/10.1016/0029-1021(76)90027-X

    Article  Google Scholar 

  8. Kundu, T., Das, S., Jata, K.V.: Detection of the point of impact on a stiffened plate by the acoustic emission technique. Smart Mater. Struct. 18(3), 035006 (2009). https://doi.org/10.1088/0964-1726/18/3/035006

    Article  Google Scholar 

  9. Coverley, P.T., Staszewski, W.: Impact damage location in composite structures using optimized sensor triangulation procedure. Smart Mater. Struct. 12(5), 795–803 (2003). https://doi.org/10.1088/0964-1726/12/5/017

    Article  Google Scholar 

  10. Dris, E.Y., Drai, R., Bentahar, M., Berkani, D.: Adaptive algorithm for estimating and tracking the location of multiple impacts on a plate-like structure. Res. Nondestruct. Eval. 31(1), 1–23 (2020). https://doi.org/10.1080/09349847.2019.1617913

    Article  Google Scholar 

  11. Niri, E.D., Farhidzadeh, A., Salamone, S.: Nonlinear kalman filtering for acoustic emission source localization in anisotropic panels. Ultrasonics 54, 486–501 (2014). https://doi.org/10.1016/j.ultras.2013.07.016

    Article  Google Scholar 

  12. Dris, E.Y., Drai, R., Bentahar, M., Berkani, D., Benammar, A.: Comparative study between EKF and Geometrical methods for the Acoustic Emission source localization. Procedia Comput. .ence 148, 438–447 (2019). https://doi.org/10.1016/j.procs.2019.01.056

    Article  Google Scholar 

  13. Kishimoto, M.K., Inoue, H., Hamada, M., Shibuya, T.: Time frequency analysis of dispersive waves by means of wavelet transform. J. Appl. Mech 62, 841–847 (1995)

    Article  MathSciNet  Google Scholar 

  14. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1998)

    MATH  Google Scholar 

  15. Anderson, B.D., Moore, J.B.: Optimal Filtering. Courier Dover Publications, New York (2012)

    MATH  Google Scholar 

  16. Kundu, T., Das, S., Jata, K.V.: Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data. J. Acoust. Soc. Am. 122, 2057–2066 (2007). https://doi.org/10.1121/1.2775322

    Article  Google Scholar 

  17. Jeong, H., Jang, Y.S.: Fracture source location in thin plates using the wavelet transform of dispersive waves. IEEE Trans. Ultras. Ferroelectr. Freq. Control 47(3), 612–619 (2000). https://doi.org/10.1109/58.842048

    Article  Google Scholar 

  18. Dris, E.Y., Drai, R., Dahou, Z., Berkani, D.: EKF and UKF methods for the Acoustic emission source localization in concrete. In: Third International Conference on 1. Intelligent Computing in Data Sciences (ICDS 2019) (2019). https://doi.org/10.1109/icds47004.2019.8942244

  19. Haase, M., Widjajakusuma, J.: Damage identification based on ridges and maxima lines of the wavelet transform. Int. J. Eng. Sci 41, 1423–1443 (2003)

    Article  Google Scholar 

  20. Otsuka, K., Date, H.: Fracture process zone in concrete tension specimen. Eng. Fract. Mech. 65, 111–131 (2000). https://doi.org/10.1016/s0013-7944(99)00111-3

    Article  Google Scholar 

  21. Zhang, D., Wu, K.: Fracture process zone of notched three-point-bending concrete beams. Cem. Concr. Res. 29, 1887–1892 (1999)

    Article  Google Scholar 

  22. Haidar, K., Pijaudier-Cabot, G., Dubé, J.F., Loukili, A.: Correlations between the internal length, the fracture process zone and size effect in mortar and model materials. Mater. Struct. 38, 201–210 (2005). https://doi.org/10.1617/14053

    Article  Google Scholar 

  23. Rossi, P., Robert, J.L., Gervais, J.P., Bruhat, D.: The use of acoustic emission in fracture mechanics applied to concrete. Eng. Fract. Mech. 35, 751–763 (1990). https://doi.org/10.1016/0013-7944(90)90158-d

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Yamine Dris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dris, E.Y., Drai, R., Dahou, Z., Berkani, D. (2022). Probabilistic Technique for Monitoring Damage and Cracking of Concrete. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020). AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1417. Springer, Cham. https://doi.org/10.1007/978-3-030-90633-7_14

Download citation

Publish with us

Policies and ethics