Skip to main content

A Network Intrusion Detection System for Concept Drifting Network Traffic Data

  • Conference paper
  • First Online:
Discovery Science (DS 2021)

Abstract

Deep neural network architectures have recently achieved state-of-the-art results learning flexible and effective intrusion detection models. Since attackers constantly use new attack vectors to avoid being detected, concept drift commonly occurs in the network traffic by degrading the effect of the detection model over time also when deep neural networks are used for intrusion detection. To combat concept drift, we describe a methodology to update a deep neural network architecture over a network traffic data stream. It integrates a concept drift detection mechanism to discover incoming traffic that deviates from the past and triggers the fine-tuning of the deep neural network architecture to fit the drifted data. The methodology leads to high predictive accuracy in presence of network traffic data with zero-day attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gsndr/Str-MINDFUL.

References

  1. Albahar, M.A.: Recurrent neural network model based on a new regularization technique for real-time intrusion detection in SDN environments. Secur. Commun. Netw. 2019, 1–9 (2019)

    Article  Google Scholar 

  2. Andresini, G., Appice, A., De Rose, L., Malerba, D.: Gan augmentation to deal with imbalance in imaging-based intrusion detection. Future Gener. Comput. Syst. 123, 108–127 (2021)

    Article  Google Scholar 

  3. Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Multi-channel deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020)

    Article  Google Scholar 

  4. Andresini, G., Appice, A., Malerba, D.: Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 569, 706–727 (2021)

    Article  MathSciNet  Google Scholar 

  5. Andresini, G., Appice, A., Malerba, D.: Nearest cluster-based intrusion detection through convolutional neural networks. Knowl. Based Syst. 216, 106798 (2021)

    Article  Google Scholar 

  6. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2019, Stockholm, Sweden, 17–19 June 2019, pp. 281–290. IEEE (2019)

    Google Scholar 

  7. Angelo, P., Costa Drummond, A.: Adaptive anomaly-based intrusion detection system using genetic algorithm and profiling. Secur. Priv. 1(4), 1–13 (2018)

    Google Scholar 

  8. Appice, A., Ciampi, A., Malerba, D.: Summarizing numeric spatial data streams by trend cluster discovery. Data Min. Knowl. Disc. 29(1), 84–136 (2013). https://doi.org/10.1007/s10618-013-0337-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016)

    Article  Google Scholar 

  10. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

    Google Scholar 

  11. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgeting in gradient based neural networks. In: International Conference on Learning Representations, ICLR 2014 (2014)

    Google Scholar 

  12. Kim, A.C., Park, M., Lee, D.H.: AI-IDS: application of deep learning to real-time web intrusion detection. IEEE Access 8, 70245–70261 (2020)

    Article  Google Scholar 

  13. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

    Article  Google Scholar 

  14. Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, HoTSoS 2018. Association for Computing Machinery (2018)

    Google Scholar 

  15. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  16. Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: 4th International Conference on Information Systems Security and Privacy, pp. 108–116 (2018)

    Google Scholar 

  17. Sovilj, D., Budnarain, P., Sanner, S., Salmon, G., Rao, M.: A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams. Expert Syst. Appl. 159, 113577 (2020)

    Article  Google Scholar 

  18. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  19. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning for unsupervised insider threat detection in structured cybersecurity data streams. In: The Workshops of the 31st AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

Download references

Acknowledgment

We acknowledge the support of the MIUR through the project “TALIsMan -Tecnologie di Assistenza personALizzata per il Miglioramento della quAlità della vitA” (Grant ID: ARS01_01116), funding scheme PON RI 2014-2020 and the project “Modelli e tecniche di data science per la analisi di dati strutturati” funded by the University of Bari “Aldo Moro”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Andresini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andresini, G., Appice, A., Loglisci, C., Belvedere, V., Redavid, D., Malerba, D. (2021). A Network Intrusion Detection System for Concept Drifting Network Traffic Data. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88942-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88941-8

  • Online ISBN: 978-3-030-88942-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics