Skip to main content

Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data

  • Conference paper
  • First Online:
Discovery Science (DS 2021)

Abstract

The huge amount of data generated by sensor networks enables many potential analyses. However, one important limiting factor for the analyses of sensor data is the possible presence of anomalies, which may affect the validity of any conclusion we could draw. This aspect motivates the adoption of a preliminary anomaly detection method. Existing methods usually do not consider the spatial nature of data generated by sensor networks. Properly modeling the spatial nature of the data, by explicitly considering spatial autocorrelation phenomena, has the potential to highlight the degree of agreement or disagreement of multiple sensor measurements located in different geographical positions. The intuition is that one could improve anomaly detection performance by considering the spatial context. In this paper, we propose a spatially-aware anomaly detection method based on a stacked auto-encoder architecture. Specifically, the proposed architecture includes a specific encoding stage that models the spatial autocorrelation in data observed at different locations. Finally, a distance-based approach leverages the embedding features returned by the auto-encoder to identify possible anomalies. Our experimental evaluation on real-world geo-distributed data collected from renewable energy plants shows the effectiveness of the proposed method, also when compared to state-of-the-art anomaly detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Outlier ensembles: position paper. ACM SIGKDD Explor. Newsl 14(2), 49–58 (2013)

    Article  Google Scholar 

  2. Anselin, L.: Local indicators of spatial association-LISA. Geograph. Anal. 27(2), 93–115 (1995)

    Article  Google Scholar 

  3. Beggel, L., Pfeiffer, M., Bischl, B.: Robust anomaly detection in images using adversarial autoencoders. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 206–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_13

    Chapter  Google Scholar 

  4. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)

    Google Scholar 

  5. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_26

    Chapter  Google Scholar 

  6. Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., Rashkovska, A.: Predictive modeling of pv energy production: How to set up the learning task for a better prediction? IEEE Trans. Ind. Inf. 13(3), 956–966 (2016)

    Article  Google Scholar 

  7. Ceci, M., Corizzo, R., Japkowicz, N., Mignone, P., Pio, G.: Echad: embedding-based change detection from multivariate time series in smart grids. IEEE Access 8, 156053–156066 (2020)

    Article  Google Scholar 

  8. Ceci, M., Corizzo, R., Malerba, D., Rashkovska, A.: Spatial autocorrelation and entropy for renewable energy forecasting. Data Min. Knowl. Disc. 33(3), 698–729 (2019). https://doi.org/10.1007/s10618-018-0605-7

    Article  Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  10. Corizzo, R., Ceci, M., Japkowicz, N.: Anomaly detection and repair for accurate predictions in geo-distributed big data. Big Data Res. 16, 18–35 (2019)

    Article  Google Scholar 

  11. Corizzo, R., Pio, G., Ceci, M., Malerba, D.: DENCAST: distributed density-based clustering for multi-target regression. J. Big Data 6(1), 1–27 (2019). https://doi.org/10.1186/s40537-019-0207-2

    Article  Google Scholar 

  12. Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: Proceedings of SIAM International Conference on Data Mining 2006, pp. 614–618. SIAM (2006)

    Google Scholar 

  13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining. pp. 413–422. IEEE (2008)

    Google Scholar 

  14. Liu, T., Moore, A.W., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: NIPS 2004, pp. 825–832. MIT Press (2004)

    Google Scholar 

  15. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 582–588 (2000)

    Google Scholar 

  16. Shekhar, S., Lu, C.T., Zhang, P.: Detecting graph-based spatial outliers: algorithms and applications (a summary of results). In: ACM SIGKDD, pp. 371–376 (2001)

    Google Scholar 

  17. Stojanova, D., Ceci, M., Appice, A., Malerba, D., Džeroski, S.: Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol. Inf. 13, 22–39 (2013)

    Article  Google Scholar 

  18. Xing, H.J., Liu, W.T.: Robust adaboost based ensemble of one-class support vector machines. Inf. Fusion 55, 45–58 (2020)

    Article  Google Scholar 

  19. Zhang, C., Song, D., Chen, Y., Feng, X., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: AAAI 2019, vol. 33, pp. 1409–1416 (2019)

    Google Scholar 

  20. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: ACM SIGKDD 2017, pp. 665–674 (2017)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of the U.S. DARPA through the project “Lifelong Streaming Anomaly Detection” (Grant N. A19-0131-003 and A21-0113-002), and of the EU Commission through the H2020 project “IMPETUS-Intelligent Management of Processes, Ethics and Technology for Urban Safety” (Grant n. 883286). GP acknowledges the support of Ministry of Universities and Research (MUR) through the project “Big Data Analytics”, AIM 1852414, activity 1, line 1. PM acknowledges the support of Apulia Region through the project “Metodi per l’ottimizzazione delle reti di distribuzione di energia e per la pianificazione di interventi manutentivi ed evolutivi” (CUP H94I20000410008, Grant n. 7EDD092A) in the context of “Research for Innovation - REFIN”. We also acknowledge the support of NVIDIA through the donation of a Titan V GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Corizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corizzo, R., Ceci, M., Pio, G., Mignone, P., Japkowicz, N. (2021). Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88942-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88941-8

  • Online ISBN: 978-3-030-88942-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics