Skip to main content

Ranking Structured Objects with Graph Neural Networks

  • Conference paper
  • First Online:
Discovery Science (DS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12986))

Included in the following conference series:

Abstract

Graph neural networks (GNNs) have been successfully applied in many structured data domains, with applications ranging from molecular property prediction to the analysis of social networks. Motivated by the broad applicability of GNNs, we propose the family of so-called RankGNNs, a combination of neural Learning to Rank (LtR) methods and GNNs. RankGNNs are trained with a set of pair-wise preferences between graphs, suggesting that one of them is preferred over the other. One practical application of this problem is drug screening, where an expert wants to find the most promising molecules in a large collection of drug candidates. We empirically demonstrate that our proposed pair-wise RankGNN approach either significantly outperforms or at least matches the ranking performance of the naïve point-wise baseline approach, in which the LtR problem is solved via GNN-based graph regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Cortys/rankgnn.

References

  1. Agarwal, S.: Learning to rank on graphs. Mach. Learn. 81(3), 333–357 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bouritsas, G., Frasca, F., Zafeiriou, S., Bronstein, M.M.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

    Google Scholar 

  3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs (2013)

    Google Scholar 

  4. Burges, C.: From RankNet to LambdaRank to LambdaMART: an overview. Technical report, MSR-TR-2010-82, Microsoft Research (2010)

    Google Scholar 

  5. Burges, C., et al.: Learning to rank using gradient descent. In: ICML (2005)

    Google Scholar 

  6. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)

    Article  MathSciNet  Google Scholar 

  7. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning. ACM Press (2007)

    Google Scholar 

  8. Damke, C., Melnikov, V., Hüllermeier, E.: A novel higher-order Weisfeiler-Lehman graph convolution. In: Proceedings of the 12th Asian Conference on Machine Learning (ACML 2020). Proceedings of Machine Learning Research, vol. 129. PMLR (2020)

    Google Scholar 

  9. Fürer, M.: On the combinatorial power of the Weisfeiler-Lehman algorithm. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_22

    Chapter  Google Scholar 

  10. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data (2015)

    Google Scholar 

  11. Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., et al.: Open graph benchmark: datasets for machine learning on graphs (2020)

    Google Scholar 

  12. Huber, J., Payne, J.W., Puto, C.: Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9(1), 90 (1982)

    Article  Google Scholar 

  13. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002. ACM Press (2002)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  16. Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., Kramer, S.: Pairwise learning to rank by neural networks revisited: reconstruction, theoretical analysis and practical performance. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11908, pp. 237–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46133-1_15

    Chapter  Google Scholar 

  17. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML, pp. 6661–6670 (2019)

    Google Scholar 

  18. Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph networks. In: NeurIPS 2019, pp. 2153–2164 (2019)

    Google Scholar 

  19. Mesaoudi-Paul, A.E., Hüllermeier, E., Busa-Fekete, R.: Ranking distributions based on noisy sorting. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, pp. 3469–3477 (2018)

    Google Scholar 

  20. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: a collection of benchmark datasets for learning with graphs (2020)

    Google Scholar 

  21. Pfannschmidt, K., Gupta, P., Hüllermeier, E.: Deep architectures for learning context-dependent ranking functions (March 2018)

    Google Scholar 

  22. Rigutini, L., Papini, T., Maggini, M., Scarselli, F.: SortNet: learning to rank by a neural preference function. IEEE Trans. Neural Netw. 22(9), 1368–1380 (2011)

    Article  Google Scholar 

  23. Sculley, D.: Combined regression and ranking. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010, pp. 979–988 (2010)

    Google Scholar 

  24. Sterling, T., Irwin, J.J.: ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model. 55(11), 2324–2337 (2015)

    Article  Google Scholar 

  25. Vishwanathan, S., Schraudolph, N., Kondor, R., Borgwardt, K.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Waegeman, W., Baets, B.D., Boullart, L.: Kernel-based learning methods for preference aggregation. 4OR 7, 169–189 (2009)

    Article  MathSciNet  Google Scholar 

  27. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

  28. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Zhang, W., et al.: When drug discovery meets web search: learning to rank for Ligand-based virtual screening. J. Cheminf. 7(1), 1–13 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Damke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damke, C., Hüllermeier, E. (2021). Ranking Structured Objects with Graph Neural Networks. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88942-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88941-8

  • Online ISBN: 978-3-030-88942-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics