Skip to main content

Prediction of Drug Exposure in the Brain from the Chemical Structure

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1389 Accesses

Abstract

The level of drug exposure in the brain is long known to relate to the physicochemical properties of the drug. The study of this relationship has attracted much attention through the years as it holds a promise that this drug property can be predicted in silico from the chemical drug structure. Various in vivo methodologies have been used to define and quantify drug exposure in the brain, the most commonly used parameter being logBB, which is the brain-to-blood ratio of the total drug concentrations. From datasets of logBB, it has been inferred that drug exposure in the brain is promoted by the lipophilicity, i.e. lipid solubility, of the drug and restricted by its hydrogen bonding potential. Recent work with the Kp,uu,brain parameter, representing a pharmacologically relevant brain-to-blood ratio of unbound drug concentrations, has confirmed the limiting effect of hydrogen bonding on drug exposure in the brain but also indicated no dependence on lipophilicity. The challenges associated with obtaining high predictivity models for Kp,uu,brain confirm the contemporary view of the blood-brain barrier as being not only physical and passive in nature but also involving specific carrier-mediated processes. It follows that in silico approaches need to compliment and merge with experimental methodologies to advance the field of brain exposure predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham MH (2004) The factors that influence permeation across the blood-brain barrier. Eur J Med Chem 39:235–240

    Article  CAS  PubMed  Google Scholar 

  • Abraham MH, Hersey A (2007) In silico models to predict brain uptake. In: Comprehensive medicinal chemistry II. Elsevier, London, p 745

    Chapter  Google Scholar 

  • Abraham MH, Chadha HS, Mitchell RC (1994) Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 83:1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Abraham MH, Ibrahim A, Zissimos AM, Zhao YH, Comer J, Reynolds DP (2002) Application of hydrogen bonding calculations in property based drug design. Drug Discov Today 7:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Bendels S, Kansy M, Wagner B, Huwyler J (2008) In silico prediction of brain and CSF permeation of small molecules using PLS regression models. Eur J Med Chem 43:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Broccatelli F, Larregieu CA, Cruciani G, Oprea TI, Benet LZ (2012) Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev 64:95–109

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Winiwarter S, Friden M, Antonsson M, Engkvist O (2011) In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J Mol Graph Model 29:985–995

    Article  CAS  PubMed  Google Scholar 

  • Clark DE (2003) In silico prediction of blood-brain barrier permeation. [see comment]. Drug Discov Today 8:927–933

    Article  CAS  PubMed  Google Scholar 

  • de Lange EC, de Boer BA, Breimer DD (1999) Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 36:211–227

    Article  PubMed  Google Scholar 

  • Demel MA, Kramer O, Ettmayer P, Haaksma EE, Ecker GF (2009) Predicting ligand interactions with ABC transporters in ADME. Chem Biodivers 6:1960–1969

    Article  CAS  PubMed  Google Scholar 

  • Ecker GF, Noe CR (2004) In silico prediction models for blood-brain barrier permeation. Curr Med Chem 11:1617–1628

    Google Scholar 

  • Ecker GF, Stockner T, Chiba P (2008) Computational models for prediction of interactions with ABC-transporters. Drug Discov Today 13:311–317

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Ecker GF, Chiba P, Swaan PW (2007) Future directions for drug transporter modelling. Xenobiotica 37:1152–1170

    Article  CAS  PubMed  Google Scholar 

  • Elmquist WF, Sawchuk RJ (1997) Application of microdialysis in pharmacokinetic studies. Pharm Res 14:267–288

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35:1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243

    Article  CAS  PubMed  Google Scholar 

  • Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based, central nervous system (CNS) Lead selection and Lead optimization for CNS drug discovery. ACS Chem Neurosci 3:50–68

    Article  CAS  PubMed  Google Scholar 

  • Gratton JA, Abraham MH, Bradbury MW, Chadha HS (1997) Molecular factors influencing drug transfer across the blood-brain barrier. J Pharm Pharmacol 49:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p,u), and K(p,uu). Drug Metab Dispos 34:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2000) The use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 45:283–294

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Bredberg U, Friden M (2009) Methodologies to assess brain drug delivery in lead optimization. Curr Top Med Chem 9:148–162

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure-brain exposure relationships. J Med Chem 49:7559–7583

    Google Scholar 

  • Johansson U, Sonstrod C, Norinder U, Bostrom H (2011) Trade-off between accuracy and interpretability for predictive in silico modeling. Future Med Chem 3:647–663

    Article  CAS  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 277:1550–1559

    CAS  PubMed  Google Scholar 

  • Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338

    Article  CAS  PubMed  Google Scholar 

  • Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Lanevskij K, Dapkunas J, Juska L, Japertas P, Didziapetris R (2011) QSAR analysis of blood-brain distribution: the influence of plasma and brain tissue binding. J Pharm Sci 100:2147–2160

    Article  CAS  PubMed  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tu M, Kelly RS, Chen C, Smith BJ (2004) Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos 32:132–139

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Dong K, Zhang W, Summerfield SG, Terstappen GC (2018) Prediction of brain: blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discov Today 23:1357–1372

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg WH, Vermeulen A, Heald D, Hammarlund-Udenaes M, Wassvik CM (2015) Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates. Mol Pharm 12:520–532

    Article  CAS  PubMed  Google Scholar 

  • Luco JM (1999) Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci 39:396–404

    Article  CAS  PubMed  Google Scholar 

  • Martin I (2004) Prediction of blood-brain barrier penetration: are we missing the point? [see comment] [comment]. Drug Discov Today 9:161–162

    Article  PubMed  Google Scholar 

  • Matsson P (2007) ATP-binding cassette efflux transporters and passive membrane permeability in drug absorption and disposition. Acta Universitatis Upsaliensis, Uppsala, p 68

    Google Scholar 

  • McAinsh J, Cruickshank JM (1990) Beta-blockers and central nervous system side effects. Pharmacol Ther 46:163–197

    Article  CAS  PubMed  Google Scholar 

  • Mehdipour AR, Hamidi M (2009) Brain drug targeting: a computational approach for overcoming blood-brain barrier. Drug Discov Today 14:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Morales JF, Montoto SS, Fagiolino P, Ruiz ME (2017) Current state and future perspectives in QSAR models to predict blood-brain barrier penetration in central nervous system drug R&D. Mini Rev Med Chem 17:247–257

    Article  CAS  PubMed  Google Scholar 

  • Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54:291–313

    Article  CAS  PubMed  Google Scholar 

  • Osterberg T, Norinder U (2000) Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J Chem Inf Comput Sci 40:1408–1411

    Article  CAS  PubMed  Google Scholar 

  • Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2004) Log(BB), PS products and in silico models of drug brain penetration. [comment]. Drug Discov Today 9:392–393

    Article  PubMed  Google Scholar 

  • Plowright AT, Nilsson K, Antonsson M, Amin K, Broddefalk J, Jensen J, Lehmann A, Jin S, St-Onge S, Tomaszewski MJ, Tremblay M, Walpole CS, Wei Z, Yang H, Ulander J (2012) Discovery of agonists of cannabinoid receptor 1 with restricted CNS penetration aimed for treatment of gastroesophageal reflux disease. J Med Chem 56(1):220–240

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Landwojtowicz E (2000) Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm Sci 12:31–40

    Article  CAS  PubMed  Google Scholar 

  • van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA (1998) Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 6:151–165

    Article  PubMed  Google Scholar 

  • van de Waterbeemd H, Smith DA, Jones BC (2001) Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 15:273–286

    Article  PubMed  Google Scholar 

  • Varadharajan S, Winiwarter S, Carlsson L, Engkvist O, Anantha A, Kogej T, Friden M, Stalring J, Chen H (2015) Exploring in silico prediction of the unbound brain-to-plasma drug concentration ratio: model validation, renewal, and interpretation. J Pharm Sci 104:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Wager T, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winiwarter S, Hilgendorf C (2008) Modeling of drug-transporter interactions using structural information. Curr Opin Drug Discov Devel 11:95–103

    CAS  PubMed  Google Scholar 

  • Winiwarter S, Ridderström M, Ungell AL, Andersson TB, Zamora I, Zamora I (2007) Use of molecular descriptors for absorption, distribution, metabolism, and excretion predictions. In: Comprehensive medicinal chemistry II. Elsevier, London, p 745

    Google Scholar 

  • Wold S (1991) Validation of QSAR’s. Quant Struct Act Relat 10:191–193

    Article  CAS  Google Scholar 

  • Wold S (2001) PLS-regression: a basic tool of chemometrics. Chemom Intel Lab 58:109–130

    Article  CAS  Google Scholar 

  • Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, Rana KK, Saunders D, Smith IR, Sore NE (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem 31:656–671

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Liu H, Summerfield SG, Luscombe CN, Sahi J (2016) Integrating in silico and in vitro approaches to predict drug accessibility to the central nervous system. Mol Pharm 13:1540–1550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Fridén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fridén, M. (2022). Prediction of Drug Exposure in the Brain from the Chemical Structure. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_14

Download citation

Publish with us

Policies and ethics