Skip to main content

Approaches Towards Prediction of CNS PK and PD

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1451 Accesses

Abstract

It has to be realized that a drug’s pharmacokinetics and pharmacodynamics results from the combination of drug properties and biological system characteristics. This chapter will address the gross anatomy and physiology of the central nervous system (CNS) and how physiological processes play a role in CNS drug-target site distribution. This is followed by physiologically based pharmacokinetic (PBPK) model characteristics and the recently developed multi-CNS compartment PBPK models for small molecules and antibodies, with good predictive power for CNS target site distribution in human, as it explicitly distinguishes between drug and systems properties. Understanding the CNS target site concentrations (Stevens et al. 2012) further helps in the development of (PB)PK-pharmacodynamic (PD) models in healthy and disease conditions to further pave the way to predict the right drug at the right location, right time, and right concentration (De Lange 2013a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abuqayyas L, Balthasar JP (2013) Investigation of the role of FcÎłR and FcRn in mAb distribution to the brain. Mol Pharm 10(5):1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT (2001) Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7:369–372

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ (1996) Passage of peptides across the blood-brain barrier: pathophysiological perspectives. Life Sci 59(23):1923–1943

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE (2002) Passage of amyloid β protein antibody across the blood–brain barrier in a mouse model of Alzheimer’s disease. Peptides 23(12):2223–2226

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol 118(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Jonathan N, LaPensee CR, LaPensee EW (2008) What Can We Learn from Rodents about Prolactin in Humans? Endocr Rev 29:1–41

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson J, Ederoth P, Ley D, Hansson S, Amer-WĂĄhlin I, Hellström-Westas L, Marsál K, Nordström CH, Hammarlund-Udenaes M (2009) The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood-brain barrier in sheep. Br J Pharmacol 157(6):1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacki J, Dobrowolska A, NierwiĹ„ska K, MaĹ‚ecki A (2008) Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 60:600–622

    CAS  PubMed  Google Scholar 

  • Black J, Leff P (1983) Operational model of pharmacological agonism. Proc R Soc Lond B 220:141–162

    Article  CAS  PubMed  Google Scholar 

  • Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, Luk W, Lu Y, Dennis MS, Weimer RM et al (2014) Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 211:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouw MR, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M (2001) Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anest Scand 45:390–392

    Article  CAS  Google Scholar 

  • Broadwell RD, Salcman M (1981) Expanding the definition of the blood-brain barrier to protein. Proc Natl Acad Sci U S A 72(20):7820–7824

    Article  Google Scholar 

  • Caram-Salas N, Boileau E, Farrington GK, Garber E, Brunette E, Abulrob A, Stanimirovic D (2011) In vitro and in vivo methods for assessing FcRn-mediated reverse transcytosis across the blood–brain barrier. Methods in Molecular Biology Permeability Barrier:383–401

    Google Scholar 

  • Chang HY, Morrow K, Bonacquisti E, Zhang W, Shah DK (2018) Antibody pharmacokinetics in rat brain determined using microdialysis. MAbs 10(6):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HY, Wu S, Meno-Tetang G, Shah DK (2019) A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 46(4):319–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleton A, Odman J, Van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M (2000) Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharm Res 17:321–327

    Article  CAS  PubMed  Google Scholar 

  • Cooper PR, Ciambrone GJ, Kliwinski CM, Maze E, Johnson L, Li Q, Feng Y, Hornby PJ (2013) Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor. FcRn Brain Res 1534:13–21

    Article  CAS  PubMed  Google Scholar 

  • Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN, Meilandt WJ, Solanoy H, Tong RK, Hoyte K, Luk W et al (2013) Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med 5:1–12

    Article  CAS  Google Scholar 

  • Cox EH, Kerbusch T, van der Graaf PH, Danhof M (1998) Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the mu-opioid receptor. J Pharmacol Exp Ther 284:1095–1103

    CAS  PubMed  Google Scholar 

  • Cserr HF, Bundgaard M (1984) Blood-brain interfaces in vertebrates: a comparative approach. Am J Physiol 246:R277–R288

    CAS  PubMed  Google Scholar 

  • Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res 22(9):1432–1437. https://doi.org/10.1007/s11095-005-5882-3

  • Danhof M, de Jongh J, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  CAS  PubMed  Google Scholar 

  • Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling in translational drug research. Trends Pharmacol Sci 29:186–191

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Davis TP, Preston JE, Abbott J, Begley DJ (2014) Chapter five - transcytosis of macromolecules at the blood–brain barrier. In: Pharmacology of the blood brain barrier: targeting CNS disorders, vol 71. Elsevier, Waltham, MA, pp 147–163

    Google Scholar 

  • de Lange EC, Bouw MR, Mandema JW, Danhof M, de Boer AG, Breimer DD (1995) Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol 116(5):2538–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ (2005) Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J 7(3):E532–43. https://doi.org/10.1208/aapsj070354

  • De Lange ECM, Hesselink MB, Danhof M, De Boer AG, Breimer DD (1995) The use of intracerebral microdialysis to determine changes in blood-brain barrier transport characteristics. Pharm Res 12:129–133

    Article  PubMed  Google Scholar 

  • De Lange ECM (2013a) The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluid Barrier CNS 10:12

    Article  CAS  Google Scholar 

  • De Lange ECM (2013b) Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn 40(3):315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedrick RL, Bisschoff KB (1980) Species similarities in pharmacokinetics. Fed Proc 39:54–59

    CAS  PubMed  Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14(1):1–13. https://doi.org/10.1002/glia.440140102

  • Fenstermacher JD, Patlak CS, Blasberg RG (1974) Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 33:2070–2074

    CAS  PubMed  Google Scholar 

  • FreskgĂĄrd P-O, Niewoehner J, Urich E (2014) Time to open the blood–brain barrier gate for biologics? Future Neurol 9:243–245

    Article  CAS  Google Scholar 

  • FreskgĂĄrd P-O, Urich E (2017) Antibody therapies in CNS diseases. Neuropharmacology 120:38–55

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res 3:21–55

    Google Scholar 

  • Gabrielsson J, Green AR (2009) Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther 331:767–774

    Article  CAS  PubMed  Google Scholar 

  • Gadkar K, Yadav DB, Zuchero JY, Couch JA, Kanodia J, Kenrick MK, Atwal JK, Dennis MS, Prabhu S, Watts RJ et al (2016) Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur J Pharm Biopharm 101:53–61

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Balthasar JP (2009) Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J 11:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido M, Gubbens-Stibbe J, Tukker E, Cox E, von Frijtag J, KĂĽnzel DM, Ijzerman A, Danhof M, Van der Graaf PH (2000) Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo. Pharm Res 17:653–659

    Article  CAS  PubMed  Google Scholar 

  • Gazzin S, Strazielle N, Tiribelli C, Ghersi-Egea JF (2012) Transport and metabolism at blood-brain interfaces and in neural cells: relevance to bilirubin-induced encephalopathy. Front Pharmacol 18;3:89. https://doi.org/10.3389/fphar.2012.00089

  • Geerts H, Roberts P, Spiros A (2015) Assessing the synergy between cholinomimetics and memantine as augmentation therapy in cognitive impairment in schizophrenia. A virtual human patient trial using quantitative systems pharmacology. Front Pharmacol 6:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glassman P, Balthasar JP (2016) Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn 43(4):427–446

    Article  PubMed  Google Scholar 

  • Girod J, Fenart L, Regina A, Dehouck M, Hong G, Scherrmann J, Cecchelli R, Roux F (1999) Transport of cationized anti-tetanus Fab2 fragments across an in vitro blood-brain barrier model: involvement of the transcytosis pathway. J Neurochem 73:2002–2008

    CAS  PubMed  Google Scholar 

  • Grime K, Riley RJ (2006) The impact of in vitro binding on in vitro-in vivo extrapolations, projections of metabolic clearance and clinical drug-drug interactions. Curr Drug Metab 7(3):251–264

    Article  CAS  PubMed  Google Scholar 

  • Groenendaal D, Freijer J, de Mik D, Bouw MR, Danhof M, De Lange EC (2007) Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux. Br J Pharmacol 151(5):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenendaal D, Freijer J, Rosier A, de Mik D, Nicholls G, Hersey A, Ayrton AD, Danhof M, de Lange EC (2008) Pharmacokinetic/pharmacodynamic modelling of the EEG effects of opioids: the role of complex biophase distribution kinetics. Eur J Pharm Sci 34(2-3):149–163

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson S, Sehlin D, Lampa E, Hammarlund-Udenaes M, Loryan I (2019) Heterogeneous drug tissue binding in brain regions of rats, Alzheimer's patients and controls: impact on translational drug development. Sci Rep 9(1):5308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammarlund-Udenaes M, FridĂ©n M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2009) Active-site concentrations of chemicals – are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106:215–220

    Article  PubMed  CAS  Google Scholar 

  • Haqqani AS, Thom G, Burrell M, Delaney CE, Brunette E, Baumann E, Sodja C, Jezierski A, Webster C, Stanimirovic DB (2018) Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. J Neurochem 146:735–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herve F, Ghinea N, Scherrmann J-M (2008) CNS delivery via adsorptive transcytosis. The AAPS J 10(3):455–472

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jadhav SB, Khaowroongrueng V, Fueth M, Otteneder MB, Richter W, Derendorf H (2017) Tissue distribution of a therapeutic monoclonal antibody determined by large pore microdialysis. J Pharm Sci 106:2853–2859

    Article  CAS  PubMed  Google Scholar 

  • Kanodia J, Gadkar K, Bumbaca D, Zhang Y, Tong R, Luk W, Hoyte K, Lu Y, Wildsmith KR, Couch JA et al (2016) Prospective design of anti-transferrin receptor bispecific antibodies for optimal delivery into the human brain. CPT Pharmacometrics Syst Pharmacol 5:283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin T, Christopoulos A (2011) Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol Sci 32(4):189–196

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25(4):186–192

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski GP (1992) Localization patterns for immunoglobulins and albumins in the brain suggest diverse mechanisms for their transport across the blood-brain barrier (BBB). Prog Brain Res 91C:149–154

    Article  Google Scholar 

  • Kumagai AK, Eisenberg JB, Pardridge WM (1987) Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 262(31):15214–15219

    Article  CAS  PubMed  Google Scholar 

  • Kvernmo T, Houben J, Sylte I (2008) Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem 8(12):1049–1067

    Article  CAS  PubMed  Google Scholar 

  • Lajoie JM, Shusta EV (2015) Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 55:613–631

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JPN et al (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Melander E, Svensson M, Payan M, König F, Jansson B, Hammarlund-Udenaes M (2016) In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy. Mol Psychiatry 21(11):1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg W, Vermeulen A, Morrison D, Monshouwer M, Heald D, Hammarlund-Udenaes M (2014) Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharm Res 31(8):2203–2219

    Article  CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MartĂ­n-GarcĂ­a E, Mannara F, GutiĂ©rrez-Cuesta J, Sabater L, Dalmau J, Maldonado R, Graus F (2013) Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J Neuroimmunol 261:53–59

    Article  PubMed  CAS  Google Scholar 

  • Neves V, Aires-Da-Silva F, Corte-Real S, Castanho MA (2016) Antibody approaches to treat brain diseases. Trends Biotechnol 34:36–48

    Article  CAS  Google Scholar 

  • Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60

    Article  CAS  PubMed  Google Scholar 

  • Okuyama T, Sakai N, Yamamoto T, Yamaoka M (2018) Tomio T. Novel blood-brain barrier delivery system to treat CNS in MPS II: First clinical trial of anti-transferrin receptor antibody fused enzyme therapy. Mol Genet Metab 123(2):S109

    Google Scholar 

  • Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88

    Article  PubMed  Google Scholar 

  • Pardridge WM (2016) CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv 13(7):963–975

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Buciak JL, Friden PM (1991) Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 259(1):66–70

    CAS  PubMed  Google Scholar 

  • Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks M, Abbott NJ, Meyerand ME, Sorokin L, Stanimirovic DB, Thome RG (2018) Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol 596(3):445–475

    Article  CAS  PubMed  Google Scholar 

  • Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet 24:3–15

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a bloodbrain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  • Sade H, Baumgartner C, Hugenmatter A, Moessner E, FreskgĂĄrd P, Niewoehner J (2014) A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One 9(4):e96340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt S, Gonzalez D, Derendorf H (2010) Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci 99(3):1107–1122

    Article  CAS  PubMed  Google Scholar 

  • Segal MB (1993) Extracellular and cerebrospinal fluids. J Inherit Metab Dis 16:617–638

    Article  CAS  PubMed  Google Scholar 

  • Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO et al (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8(4):1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Spector R, Spector AZ, Snodgrass SR (1977) Model for transport in the central nervous system. Am J Physiol 1:R73–R79

    Google Scholar 

  • St-Amour I, ParĂ© I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, Vandal M, Soulet D, Bazin R, Calon F (2013) Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier. J Cereb Blood Flow Metab 33:1983–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens J, Ploeger B, Hammarlund-Udenaes M, Osswald G, Graaf PH, Danhof M, de Lange ECM (2012) Mechanism-based PK–PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn 39(5):463–477

    Article  CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10(5):1473–1491

    Article  CAS  PubMed  Google Scholar 

  • Syvänen S, Lindhe Ă–, Palner M, Kornum BR, Rahman O, LĂĄngström B, Knudsen GM, Hammarlund-Udenaes M (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643

    Article  PubMed  CAS  Google Scholar 

  • Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, Ingelsson M, Lannfelt L, Sehlin D (2018) Efficient clearance of Aβ protofibrils in AβPP-transgenic mice treated with a brain-penetrating bifunctional antibody. Alzheimer Res Therap 10(49):1–10

    Google Scholar 

  • Thom G, Burrell M, Haqqani AS, Yogi A, Lessard E, Brunette E, Delaney C, Baumann E, Callaghan D, Rodrigo N et al (2018) Enhanced delivery of Galanin conjugates to the brain through bioengineering of the anti-transferrin receptor antibody OX26. Mol Pharm 15:1420–1431

    Article  CAS  PubMed  Google Scholar 

  • Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem 54(6):1882–1888

    Article  CAS  PubMed  Google Scholar 

  • Tuk B, van Gool T, Danhof M (2002) Mechanism-based pharmacodynamic modeling of the interaction of midazolam, bretazenil, and zolpidem with ethanol. J Pharmacokinet Pharmacodyn 29(3):235–250

    Article  CAS  PubMed  Google Scholar 

  • Tuk B, van Oostenbruggen MF, Herben VM, Mandema JW, Danhof M (1999) Characterization of the pharmacodynamic interaction between parent drug and active metabolite in vivo: midazolam and alpha-OH-midazolam. J Pharmacol Exp Ther 289(2):1067–1074

    CAS  PubMed  Google Scholar 

  • Turksen K, Caram-Salas N, Boileau E, Farrington GK, Garber E, Brunette E, Abulrob A, Stanimirovic D (2011) In vitro and in vivo methods for assessing FcRn-mediated reverse transcytosis across the blood–brain barrier. In: Permeability barrier: methods and protocols, vol 763. Humana Press/Springer, New York, pp 383–401

    Chapter  Google Scholar 

  • Van den Brink W, van den Berg DJ, Bonsel F, Hartman R, Wong YC, van der Graaf PH, De Lange ECM (2019) Blood-based biomarkers of quinpirole pharmacology: multivariate PK/PD and metabolomics to unravel the underlying dynamics in plasma and brain. CPT Pharmacometrics Syst Pharmacol 8(2):107–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Brink WJ, Elassais-Schaap J, Gonzalez B, Harms A, van der Graaf PH, Hankemeier T, de Lange ECM (2017) Remoxipride causes multiple pharmacokinetic/pharmacodynamic response patterns in pharmacometabolomics in rats. Eur J Pharm Sci 109:431–440

    PubMed  CAS  Google Scholar 

  • Van den Brink WJ, van den Berg DJ, Bonsel FEM, Hartman R, Wong YC, van der Graaf PH, de Lange ECM (2018) Fingerprints of CNS drug effects: a plasma neuroendocrine reflection of D2 receptor activation using multi-biomarker pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 175(19):3832–3843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Graaf PH, Danhof M (1997a) Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling. Int J Clin Pharmacol Ther 35:442–446

    PubMed  Google Scholar 

  • Van der Graaf PH, Danhof M (1997b) On the reliability of affinity and efficacy estimates obtained by direct operational model fitting of agonist concentration-effect curves following irreversible receptor inactivation. J Pharmacol Toxicol Methods 38(2):81–85

    Article  PubMed  Google Scholar 

  • Van Schaick EA, Tukker HE, Roelen HCPF, IJzerman AP, Danhof M (1998) Selectivity of action of 8-alkylamino analogues of N6-cyclopentyladenosine in vivo: haemodynamic versus anti-lipolytic responses in rats. Br J Pharmacol 124(3):607–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Villaseñor R, Ozmen L, Messaddeq N, GrĂĽninger F, Loetscher H, Keller A, Betsholtz C, Freskgard P-O, Collin L (2016) Trafficking of endogenous immunoglobulins by endothelial cells at the blood-brain barrier. Sci Rep 6:25658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visser SA, Wolters FL, Gubbens-Stibbe JM, Tukker E, Van Der Graaf PH, Peletier LA, Danhof M (2003) Mechanism-based pharmacokinetic/pharmacodynamic modeling of the electroencephalogram effects of GABAA receptor modulators: in vitro-in vivo correlations. J Pharmacol Exp Ther 304(1):88–101

    Article  CAS  PubMed  Google Scholar 

  • Vlot AHC, Witte WEA, Danhof M, van der Graaf PH, van Westen GJP, de Lange ECM (2017) Target and tissue selectivity prediction by integrated mechanistic pharmacokinetic-target binding and quantitative structure activity modelling. AAPSJ 20(1):11

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37:753–760

    Article  CAS  PubMed  Google Scholar 

  • Watts RJ, Dennis MS (2013) Bispecific antibodies for delivery into the brain. Curr Opin Chem Biol 17:393–399

    Article  CAS  PubMed  Google Scholar 

  • Westerhout J, Danhof M, De Lange EC (2011) Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 100(9):3577–3593. https://doi.org/10.1002/jps.22604

  • Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange ECM (2012) Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 14(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerhout J, Smeets J, Danhof M, de Lange ECM (2013) The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn 40:327–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerhout J, van den Berg DJ, Hartman R, Danhof M, de Lange ECM (2014) Prediction of methotrexate CNS distribution in different species and the influence of disease conditions. Eur J Pharm Sci 57:11–24

    Article  CAS  PubMed  Google Scholar 

  • Wolak DJ, Pizzo ME, Thorne RG (2015) Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J Control Release 197:78–86

    Article  CAS  PubMed  Google Scholar 

  • Yadav DB, Maloney JA, Wildsmith KR, Fuji RN, Meilandt WJ, Solanoy H, Lu Y, Peng K, Wilson B, Chan P et al (2017) Widespread brain distribution and activity following i.c.v. infusion of anti-β-secretase (BACE1) in nonhuman primates. Br J Pharmacol 174(22):4173–4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Danhof M, de Lange EC (2017a) Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. AAPS J 19(4):891–909

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman RH, Wong YC et al (2017b) Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol 6(11):765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Välitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman RH et al (2018) Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci 112:168–179

    Article  CAS  PubMed  Google Scholar 

  • Yassen A, Olofsen E, Kan J, Dahan A, Danhof M (2007) Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet 46:433–447

    Article  CAS  PubMed  Google Scholar 

  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ et al (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3:84ra44

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pardridge WM (2001) Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. J Neuroimmunol 114:168–172

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16(12):1370–1371. https://doi.org/10.1038/nm1210-1370

  • Zuideveld KP, van der Graaf PH, Peletier LA, Danhof M (2007) Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm Res 24:2031–2039

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. M. de Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lange, E.C.M.d., Chang, H.Y., Shah, D. (2022). Approaches Towards Prediction of CNS PK and PD. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_12

Download citation

Publish with us

Policies and ethics