Skip to main content

Neural Predictive Monitoring Under Partial Observability

  • Conference paper
  • First Online:
Runtime Verification (RV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12974))

Included in the following conference series:

Abstract

We consider the problem of predictive monitoring (PM), i.e., predicting at runtime future violations of a system from the current state. We work under the most realistic settings where only partial and noisy observations of the state are available at runtime. Such settings directly affect the accuracy and reliability of the reachability predictions, jeopardizing the safety of the system. In this work, we present a learning-based method for PM that produces accurate and reliable reachability predictions despite partial observability (PO). We build on Neural Predictive Monitoring (NPM), a PM method that uses deep neural networks for approximating hybrid systems reachability, and extend it to the PO case. We propose and compare two solutions, an end-to-end approach, which directly operates on the rough observations, and a two-step approach, which introduces an intermediate state estimation step. Both solutions rely on conformal prediction to provide 1) probabilistic guarantees in the form of prediction regions and 2) sound estimates of predictive uncertainty. We use the latter to identify unreliable (and likely erroneous) predictions and to retrain and improve the monitors on these uncertain inputs (i.e., active learning). Our method results in highly accurate reachability predictions and error detection, as well as tight prediction regions with guaranteed coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Feasibility of state reconstruction is affected by the time lag and the sequence length. Our focus is to derive the best predictions for fixed lag and sequence length, not to fine-tune these to improve identifiability.

  2. 2.

    Ties can be resolved by imposing an ordering over the classes.

  3. 3.

    Such prediction intervals have the same width (\(\alpha _{(\epsilon )}\)) for all inputs. There are techniques like [30] that allow to construct intervals with input-dependent widths, which can be equivalently applied to our problem.

  4. 4.

    The experiments were performed on a computer with a CPU Intel x86, 24 cores and a 128 GB RAM and 15 GB of GPU Tesla V100.

  5. 5.

    We select re-training points based on the uncertainty of the reachability predictor; if the SE performed badly on those same points, re-training would have led to a higher SE accuracy and hence, increased coverage.

  6. 6.

    pykalman library: https://pykalman.github.io/.

  7. 7.

    do-mpc library: https://www.do-mpc.com/en/latest/.

  8. 8.

    The authors develop a solution for Bayesian RNNs calibration, but such solution in turn is not guaranteed to produce well-calibrated models.

References

  1. Allan, D.A., Rawlings, J.B.: Moving horizon estimation. In: Raković, S.V., Levine, W.S. (eds.) Handbook of Model Predictive Control. CE, pp. 99–124. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3_5

    Chapter  Google Scholar 

  2. Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J.: Nonlinear predictive control and moving horizon estimation - an introductory overview. In: Frank, P.M. (ed.) Advances in Control, pp. 391–449. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0853-5_19

    Chapter  Google Scholar 

  3. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016. In: Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems (2016)

    Google Scholar 

  4. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

    Google Scholar 

  5. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications. Newnes, London (2014)

    MATH  Google Scholar 

  6. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  7. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox for set-based reachability. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

    Google Scholar 

  8. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive monitoring. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_8

    Chapter  Google Scholar 

  9. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive monitoring and a comparison of frequentist and Bayesian approaches. Int. J. Softw. Tools Technol. Transf. (2021). https://doi.org/10.1007/s10009-021-00623-1

  10. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial observability. In: Feng, L., Fisman, D. (eds.) RV 2021, LNCS 12974, pp. 121–141. Springer, Cham (2021)

    Google Scholar 

  12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  13. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehicle models using Bayesian estimation and reachability analysis. In: International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  14. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application to reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3034–3039. IEEE (2006)

    Google Scholar 

  15. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: EPiC Series in Computing (2020)

    Google Scholar 

  16. Granig, W., Jakšić, S., Lewitschnig, H., Mateis, C., Ničković, D.: Weakness monitors for fail-aware systems. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 283–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_17

    Chapter  MATH  Google Scholar 

  17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties of hybrid systems with neural network controllers. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 169–178 (2019)

    Google Scholar 

  18. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified simplex design. ACM Trans. Embedded Comput. Syst. (TECS) 15(2), 1–27 (2016)

    Article  Google Scholar 

  19. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for Markov decision processes. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 553–576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_26

    Chapter  Google Scholar 

  20. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_9

    Chapter  Google Scholar 

  21. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: International Conference on Machine Learning, pp. 2796–2804. PMLR (2018)

    Google Scholar 

  22. Ma, M., Stankovic, J.A., Bartocci, E., Feng, L.: Predictive monitoring with logic-calibrated uncertainty for cyber-physical systems. CoRR abs/2011.00384v2 (2020)

    Google Scholar 

  23. Mehmood, U., Stoller, S.D., Grosu, R., Roy, S., Damare, A., Smolka, S.A.: A distributed simplex architecture for multi-agent systems. arXiv preprint arXiv:2012.10153 (2020)

  24. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. In: Tools in Artificial Intelligence. InTech (2008)

    Google Scholar 

  25. Paszke, A., et al.: Automatic differentiation in Pytorch. In: NIPS-W (2017)

    Google Scholar 

  26. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_25

    Chapter  Google Scholar 

  27. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural simplex architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 97–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_6

    Chapter  Google Scholar 

  28. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Predictive runtime verification of timed properties. J. Syst. Softw. 132, 353–365 (2017)

    Article  Google Scholar 

  29. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with probabilistic guarantees. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 266–267. ACM (2019)

    Google Scholar 

  30. Romano, Y., Patterson, E., Candès, E.J.: Conformalized quantile regression. arXiv preprint arXiv:1905.03222 (2019)

  31. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based approximate reachability with guarantees applied to safe trajectory tracking. arXiv preprint arXiv:1803.03237 (2018)

  32. Sha, L., et al.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)

    Article  Google Scholar 

  33. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_15

    Chapter  Google Scholar 

  34. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, Boston (2005). https://doi.org/10.1007/b106715

    Book  MATH  Google Scholar 

  35. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158. IEEE (2000)

    Google Scholar 

  36. Yel, E., et al.: Assured runtime monitoring and planning: toward verification of neural networks for safe autonomous operations. IEEE Robot. Autom. Mag. 27(2), 102–116 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cairoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cairoli, F., Bortolussi, L., Paoletti, N. (2021). Neural Predictive Monitoring Under Partial Observability. In: Feng, L., Fisman, D. (eds) Runtime Verification. RV 2021. Lecture Notes in Computer Science(), vol 12974. Springer, Cham. https://doi.org/10.1007/978-3-030-88494-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88494-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88493-2

  • Online ISBN: 978-3-030-88494-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics