Skip to main content

Biopotential Acquisition Systems

  • Chapter
  • First Online:
Book cover Medicine-Based Informatics and Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 571 Accesses

Abstract

Biopotential acquisition systems have evolved for more than a century and can be considered a very mature technology in some respects. However, the conditions under which they must operate have also evolved. The most challenging applications see biopotential measurements moving from laboratories and medical offices to non-conditioned environments and providing 24-h monitoring through networked digital data connections. In this chapter, the design of biopotential amplifiers is contextualized within this framework which claims for reliable wearable devices with constraints of cost, portability, usability, and robustness. The main implication for the system is discussed: a trade-off between the dynamic range, frequency range, and power consumption which must be defined considering specific features to be extracted from the biopotential signal. Implementations can take advantage of a wide range of commercial devices from operational amplifiers for the front-end, mixed-signal systems-on-chip for analog to digital conversion, powerful microcontrollers for data processing and user interfacing, and wireless chips benefiting from ubiquitous infrastructures such as Bluetooth, WiFi, or mobile networks for data transmission following a variety of possible paths from the personal area network to a server in the cloud. Of course, an adequate instrumentation stage is key to deliver the functionality that these technologies enable. Therefore, we discuss the non-idealities impacting the performance of the analog front-end, measurement topologies including multiple-electrode configurations, grounding, and common-mode voltage managing strategies, a general approach to power-line interference analysis, and an analysis of motion artifacts and filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alotaiby T, El-Samie FEA, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Sig Process 2015(1):66. https://doi.org/10.1186/s13634-015-0251-9

  • Amatniek E (1958) Measurement of bioelectric potentials with microelectrodes and neutralized input capacity amplifiers. IRE Trans Med Electron PGME-10:3–14. https://doi.org/10.1109/IRET-ME.1958.5008482

  • ANSI/AAMI/IEC (2016) 60601–2–25:2011 (R2016) Medical electrical equipment Part 2–25: particular requirements for the basic safety and essential performance of electrocardiographs

    Google Scholar 

  • Ayoub MA, Eltawil AM (2020) Throughput characterization for bluetooth low energy with applications in body area networks. In: 2020 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4

    Google Scholar 

  • Babusiak B, Borik S, Smondrk M (2020) Two-electrode ECG for ambulatory monitoring with minimal hardware complexity. Sensors 20(8):2386. https://doi.org/10.3390/s20082386

    Article  Google Scholar 

  • Barold SS (2003) Willem Einthoven and the birth of clinical electrocardiography a hundred years ago. Card Electrophysiol Rev 7(1):99–104. https://doi.org/10.1023/A:1023667812925

    Article  Google Scholar 

  • Catacora VA, Guerrero FN, Haberman MA, Spinelli EM (2020) Electromyography sensor for wearable multi-channel platform. Rev Argentina Bioingeniería 24(3):24–28

    Google Scholar 

  • Ceriani A, Madou R, Haberman M, Spinelli E (2020) Bioelectric signals of the body: from electronic engineering to artistic performance. EAI Endorsed Trans Creat Technol 7(22):163481. https://doi.org/10.4108/eai.13-7-2018.163481

  • Chi YM, Wang YT, Wang Y, Maier C, Jung TP, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20(2):228–235. https://doi.org/10.1109/TNSRE.2011.2174652

    Article  Google Scholar 

  • Chon KH, McManus DD (2018) Detection of atrial fibrillation using a smartwatch. Nat Rev Cardiol 15:657–658

    Article  Google Scholar 

  • Cibis T, McEwan A, Sieber A, Eskofier B, Lippmann J, Friedl K, Bennett M (2017) Diving into research of biomedical engineering in scuba diving. IEEE Rev Biomed Eng 10:323–333. https://doi.org/10.1109/RBME.2017.2713300

    Article  Google Scholar 

  • Cosoli G, Spinsante S, Scardulla F, D’Acquisto L, Scalise L (2021) Wireless ECG and cardiac monitoring systems: state of the art, available commercial devices and useful electronic components. Measurement 177:109243. https://doi.org/10.1016/j.measurement.2021.109243

  • Curtin M (1994) Sigma-delta techniques reduce hardware count and power consumption in biomedical analog front end. Analog Dialogue 28(2):6–7

    Google Scholar 

  • Damis HA, Khalid N, Mirzavand R, Chung H-J, Mousavi P (2018) Investigation of epidermal loop antennas for biotelemetry IoT applications. IEEE Access 6:15806–15815. https://doi.org/10.1109/ACCESS.2018.2814005

    Article  Google Scholar 

  • Dobrev D, Neycheva T, Mudrov N (2005) Simple two-electrode biosignal amplifier. Med Biol Eng Comput 43:725–30. https://doi.org/10.1007/s11517-008-0312-4

    Article  Google Scholar 

  • Erdem C, Forbes A, Grı Erdem Ǣ, Çamcı A, Forbes AG (2017) Biostomp: a biocontrol system for embodied performance using mechanomyography. In: International conference on new interfaces for musical expression, pp 65–70

    Google Scholar 

  • Floriano A, Delisle-Rodriguez D, Diez PF, Bastos-Filho TF (2020) Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on depth-of-field. Comput Methods Programs Biomed 184:105271. https://doi.org/10.1016/j.cmpb.2019.105271

  • Fu Y, Zhao J, Dong Y, Wang X (2020) Dry electrodes for human bioelectrical signal monitoring. Sensors (switzerland) 20(13):1–30. https://doi.org/10.3390/s20133651

    Article  Google Scholar 

  • Fung E, Järvelin MR, Doshi RN, Shinbane JS, Carlson SK, Grazette LP, Chang PM, Sangha RS, Huikuri HV, Peters NS (2015) Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Front Physiol 6

    Google Scholar 

  • Gomez-Clapers J, Serrano-Finetti E, Casanella R, Pallas-Areny R (2011) Can driven-right-leg circuits increase interference in ECG amplifiers? Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS (March):4780–4783. https://doi.org/10.1109/IEMBS.2011.6091184

  • Grimnes S (1983) Impedance measurement of individual skin surface electrodes. Med Biol Eng Comput 21(6):750–755

    Article  Google Scholar 

  • Guerrero FN, Spinelli EM (2017a) High gain driven right leg circuit for dry electrode systems. Med Eng Phys 39:117–122. https://doi.org/10.1016/j.medengphy.2016.11.005

  • Guerrero FN, Spinelli EM (2017b) A simple encoding method for sigma-delta ADC based biopotential acquisition systems. J Med Eng Technol 41(7):546–552. https://doi.org/10.1080/03091902.2017.1366562

  • Guerrero FN, Spinelli EM (2018) A two-wired ultra-high input impedance active electrode. IEEE Trans Biomed Circuits Syst 12(2):437–445. https://doi.org/10.1109/TBCAS.2018.2796581

    Article  Google Scholar 

  • Guerrero FN, Madou R, Catacora VA, Haberman MA, García PA, Veiga AL, Spinelli EM (2020) WIMUMO project: a wearable open device for physiological signals acquisition. Rev Argentina Bioingeniería 24(3)

    Google Scholar 

  • Haberman M, Spinelli E (2010) A digital driven right leg circuit. In: 2010 annual international conference IEEE engineering medicine and biology society EMBC’10, pp 6559–6562. https://doi.org/10.1109/IEMBS.2010.5627108

  • Haberman M, Cassino A, Spinelli E (2011) Estimation of stray coupling capacitances in biopotential measurements. Med Biol Eng Comput 49(9):1067–1071. https://doi.org/10.1007/s11517-011-0811-6

    Article  Google Scholar 

  • Habibzadeh TSE, Molinas M, Ytterdal T (2020) Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sens J 20(24):14565–14577. https://doi.org/10.1109/JSEN.2020.3012394

    Article  Google Scholar 

  • Hagemann B, Luhede G, Luczak H (1985) Improved “active” electrodes for recording bioelectric signals in work physiology. Eur J Appl Physiol Occup Physiol 54(1):95–98

    Article  Google Scholar 

  • Hattwick I, Wanderley MM (2017) Design of hardware systems for professional artistic applications. In: Proceedings of the international conference on new interfaces for musical expression, pp 436–441

    Google Scholar 

  • Holkeri A, Eranti A, Kenttä TV, Noponen K, Haukilahti MAE, Seppänen T, Junttila MJ, Kerola T, Rissanen H, Heliövaara M, Knekt P, Aro AL, Huikuri HV (2018) Experiences in digitizing and digitally measuring a paper-based ECG archive. J Electrocardiol 51(1):74–81. https://doi.org/10.1016/j.jelectrocard.2017.09.007

    Article  Google Scholar 

  • Hsieh H-Y, Luo C-H, Ye J-W, Tai C-C (2019) Two-electrode-pair electrocardiogram with no common ground between two pairs. Rev Sci Instrum 90(11):114703. https://doi.org/10.1063/1.5016939

  • Huhta JC, Webster JG (1973) 60-HZ interference in electrocardiography. IEEE Trans Biomed Eng 20(2):91–101. https://doi.org/10.1109/TBME.1973.324169

    Article  Google Scholar 

  • Hussein AF, Hashim SJ, Aziz AFA, Rokhani FZ, Adnan WAW (2017) A real time ECG data compression scheme for enhanced bluetooth low energy ECG system power consumption. J Ambient Intell Humaniz Comput 1–14. https://doi.org/10.1007/s12652-017-0560-y

  • IEC (2020) Medical electrical equipment—Part 1: general requirements for basic safety and essential performance. In: IEC 60601–1, 3.2

    Google Scholar 

  • Jewell MO, Costanza E, Kittley-Davies Agents J (2015) Connecting the things to the internet: an evaluation of four configuration strategies for wi-fi devices with minimal user interfaces. UbiComp 2015—proceedings of 2015 ACM international joint conference pervasive ubiquitous computing, pp 767–778. https://doi.org/10.1145/2750858.2807535

  • Kappel SL, Rank ML, Toft HO, Andersen M, Kidmose P (2019) Dry-contact electrode Ear-EEG. IEEE Trans Biomed Eng 66(1):150–158. https://doi.org/10.1109/TBME.2018.2835778

    Article  Google Scholar 

  • Kolamunna H, Chauhan J, Hu Y, Thilakarathna K, Perino D, Makaroff D, Seneviratne A (2017) Are wearables ready for HTTPS? On the potential of direct secure communication on wearables. In: Proceedings—conference on local computer networks, LCN. IEEE Computer Society, pp 321–329

    Google Scholar 

  • Koole MAC, Kauw D, Winter MM, Dohmen DAJ, Tulevski II, de Haan R, Somsen GA, Schijven MP, Robbers-Visser D, Mulder BJM, Bouma BJ, Schuuring MJ (2019) First real-world experience with mobile health telemonitoring in adult patients with congenital heart disease. Neth Hear J 27(1):30–37. https://doi.org/10.1007/s12471-018-1201-6

    Article  Google Scholar 

  • Lagerlund TD (2000) Manipulating the magic of digital EEG: montage reformatting and filtering. Neurodiagn J 40(2):121–136. https://doi.org/10.1080/1086508x.2000.11079295

    Article  Google Scholar 

  • Leenen JPL, Leerentveld C, van Dijk JD, van Westreenen HL, Schoonhoven L, Patijn GA (2020) Current evidence for continuous vital signs monitoring by wearable wireless devices in hospitalized adults: systematic review. J Med Internet Res 22(6):e18636. https://doi.org/10.2196/18636

  • Levkov CL (1982) Amplification of biosignals by body potential driving. Med Biol Eng Comput 20:248–250. https://doi.org/10.1007/BF02442297

  • Linnenbank A, Metting Van Rijn AC, Grimbergen C, De Bakker J (1995) Choosing the resolution in AD conversion of biomedical signals. In: Proceedings of the XXIInd international congress on electrocardiology. Nijmegen, The Netherlands, pp 198–199

    Google Scholar 

  • Mahdiani S, Jeyhani V, Peltokangas M, Vehkaoja A (2015) Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis? In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. Institute of Electrical and Electronics Engineers Inc., pp 5948–5951

    Google Scholar 

  • Mathewson KE, Harrison TJL, Kizuk SAD (2017) High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 54(1):74–82. https://doi.org/10.1111/psyp.12536

    Article  Google Scholar 

  • Merletti R, Cerone GL (2020) Tutorial. Surface EMG detection, conditioning and pre-processing: best practices. J Electromyogr Kinesiol 54(May):102440. https://doi.org/10.1016/j.jelekin.2020.102440

  • Metting van Rijn AC, Peper A, Grimbergen CA (1990) High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice. Med Biol Eng Comput 28(5):389–397. https://doi.org/10.1007/BF02441961

  • Metting van Rijn AC, Peper A, Grimbergen CA (1991) The isolation mode rejection ratio in bioelectric amplifiers. IEEE Trans Biomed Eng 38(11):1154–1157. https://doi.org/10.1109/10.99079

    Article  Google Scholar 

  • Naït-Ali A, Cavaro-Ménard C (2010) Compression of biomedical images and signals. ISTE, London, UK

    Google Scholar 

  • Němcová A, Smíšek R, Maršánová L, Smital L, Vítek M (2018) A comparative analysis of methods for evaluation of ECG signal quality after compression. Biomed Res Int 2018:1–26. https://doi.org/10.1155/2018/1868519

    Article  Google Scholar 

  • Neuman MR (1998) Biopotential amplifiers. In: Medical instrumentation: application and design. Wiley, pp 316–318

    Google Scholar 

  • Nonclercq A, Mathys P (2004) Reduction of power line interference using active electrodes and a driven-right-leg circuit in electroencephalographic recording with a minimum number of electrodes. Annu Int Conf IEEE Eng Med Biol Proc 26(3):2247–2250. https://doi.org/10.1109/iembs.2004.1403654

    Article  Google Scholar 

  • Pethe J, Mühler R, Von Specht H (1998) Influence of electrode position on near-threshold recording of auditory evoked brainstem potentials. Scand Audiol 27(2):77–80. https://doi.org/10.1080/010503998420315

    Article  Google Scholar 

  • Phinyomark A, Khushaba RN, Scheme E (2018) Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors (switzerland) 18(5):1–17. https://doi.org/10.3390/s18051615

    Article  Google Scholar 

  • Plonsey R, Barr RC (2007) Bioelectricity: a quantitative approach, 3rd edn. Springer, US, Boston, MA

    MATH  Google Scholar 

  • Ramasamy S, Balan A (2018) Wearable sensors for ECG measurement: a review. Sens Rev 38(4):412–419. https://doi.org/10.1108/SR-06-2017-0110

    Article  Google Scholar 

  • Ray PP (2018) A survey on internet of things architectures. J King Saud Univ Comput Inf Sci 30:291–319

    Google Scholar 

  • Richards J, Lim M, Li G, Araya E, Jia Y (2020) Continuous ECG monitoring with low-power electronics and energy harvesting. In: 2020 IEEE 63rd international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 643–646

    Google Scholar 

  • Safari L, Ferri G, Minaei S, Stornelli V (2019) Current-mode instrumentation amplifiers. Springer International Publishing, Cham

    Book  Google Scholar 

  • Scheer HJ, Sander T, Trahms L (2006) The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol Meas 27(2):109–117. https://doi.org/10.1088/0967-3334/27/2/002

    Article  Google Scholar 

  • Searle A, Kirkup L (2000) A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas 21(2):271–283. https://doi.org/10.1088/0967-3334/21/2/307

    Article  Google Scholar 

  • Shah RC, Nachman L, Wan C (2008) On the performance of Bluetooth and IEEE 802.15.4 radios in a body area network. In: Proceedings of the 3rd international ICST conference on body area networks. ICST

    Google Scholar 

  • Spinelli E, Haberman M (2010) Insulating electrodes: a review on biopotential front ends for dielectric skin-electrode interfaces. Physiol Meas 31(10):S183–S198. https://doi.org/10.1088/0967-3334/31/10/S03

    Article  Google Scholar 

  • Spinelli EM, Guerrero FN (2017) Chapter 12—the biological amplifier. In: Valentinuzzi ME (ed) Further understanding of the human machine: the road to bioengineering, 1st edn. World Scientific Publishing Co. Pte. Ltd, New Jersey, pp 463–500

    Google Scholar 

  • Spinelli EM, Martmez NH, Mayosky MA (1999) A transconductance driven-right-leg circuit. IEEE Trans Biomed Eng 46(12):1466–1470. https://doi.org/10.1109/10.804574

    Article  Google Scholar 

  • Spinelli EM, Martinez NH, Mayosky MA (2001) A single supply biopotential amplifier. Med Eng Phys 23(3):235–238. https://doi.org/10.1016/S1350-4533(01)00040-6

    Article  Google Scholar 

  • Spinelli EM, Pallàs-Areny R, Mayosky MA (2003) AC-coupled front-end for biopotential measurements. IEEE Trans Biomed Eng 50(3):391–395. https://doi.org/10.1109/TBME.2003.808826

    Article  Google Scholar 

  • Spinelli E, Haberman M, García P, Guerrero F (2012) A capacitive electrode with fast recovery feature. Physiol Meas 33(8):1277–1288. https://doi.org/10.1088/0967-3334/33/8/1277

    Article  Google Scholar 

  • Sun Y, Yu X (2014) An innovative nonintrusive driver assistance system for vital signal monitoring. IEEE J Biomed Heal Informatics 18(6):1932–1939. https://doi.org/10.1109/JBHI.2014.2305403

    Article  MathSciNet  Google Scholar 

  • Thakor NV, Webster JG (1980) Ground-free ECG recording with two electrodes. IEEE Trans Biomed Eng BME 27(12):699–704. https://doi.org/10.1109/TBME.1980.326595

    Article  Google Scholar 

  • Trobec R, Tomašić I, Rashkovska A, Depolli M, Avbelj V (2018) Commercial ECG systems. In: Springer briefs in applied sciences and technology. Springer, pp 101–114

    Google Scholar 

  • Young B (2019) New standards for ECG equipment. J Electrocardiol 57:S1–S4

    Article  Google Scholar 

  • Yun JE, Park JE, Park HY, Lee HY, Park DA (2018) Comparative effectiveness of telemonitoring versus usual care for heart failure: a systematic review and meta-analysis. J Card Fail 24(1):19–28. https://doi.org/10.1016/j.cardfail.2017.09.006

    Article  Google Scholar 

  • Winter BB, Webster JG (1983) Driven-right-leg circuit design. IEEE Trans Biomed Eng 30:62–6. https://doi.org/10.1109/tbme.1983.325168

Download references

Acknowledgements

The authors would like to thank Dr. Marcelo Haberman for contribution with material and Dr. Dobromir Dobrev for suggestions that impacted the contents of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico N. Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrero, F.N., Spinelli, E.M. (2022). Biopotential Acquisition Systems. In: Simini, F., Bertemes-Filho, P. (eds) Medicine-Based Informatics and Engineering. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-87845-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87845-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87844-3

  • Online ISBN: 978-3-030-87845-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics