Skip to main content

Vessel Width Estimation via Convolutional Regression

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Vessel width estimation has a wide range of applications in disease diagnosis and treatment. In this paper, vessel width estimation is cast as a regression problem, and a novel Convolutional Neural Network (CNN) based method is proposed for vessel width estimation. In our CNN-based method, the idea of divide-and-conquer is introduced to solve the challenge of imbalanced training samples. Besides, in order to solve the shortage of training samples required by CNN, a vessel width label generation method is proposed to generate width labels from vessel segmentation labels. In the experiments, we apply our vessel width label generation method and CNN-based width estimation method to two tasks which are retinal vessel width estimation and coronary artery width estimation. Experimental results show that our width label generation method can generate sufficiently realistic width labels using accurate segmentation labels. Also, our CNN-based method can solve the challenge of imbalanced training samples, achieving state-of-the-art performance with less inference time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein, R., Klein, B.E., Moss, S.E.: The relation of systemic hypertension to changes in the retinal vasculature: the Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 95, 329–350 (1997)

    Google Scholar 

  2. Brinchmann-Hansen, O., Heier, H.: Theoretical relations between light streak characteristics and optical properties of retinal vessels. Acta Ophthalmol. 64, 33–37 (1986)

    Article  Google Scholar 

  3. Rezaeian, M., Butlin, M., Golzan, S.M., Graham, S.L., Avolio, A.P.: A novel method for retinal vessel segmentation and diameter measurement using high speed video. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2781–2784 (2019)

    Google Scholar 

  4. Sun, G., Liu, X., Wang, S., Gao, L., Liu, M.: Width measurement for pathological vessels in retinal images using centerline correction and k-means clustering. Measurement 139, 185–195 (2019)

    Article  Google Scholar 

  5. Zhou, L., Rzeszotarski, M.S., Singerman, L.J., Chokreff, J.M.: The detection and quantification of retinopathy using digital angiograms. IEEE Trans. Med. Imaging 13(4), 619–626 (1994)

    Article  Google Scholar 

  6. Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.L.: Measurement of retinal vessel widths from fundus images based on 2-D modeling. IEEE Trans. Med. Imaging 23(10), 1196–1204 (2004)

    Article  Google Scholar 

  7. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009)

    Article  Google Scholar 

  8. Xu, X., et al.: Vessel boundary delineation on fundus images using graph-based approach. IEEE Trans. Med. Imaging 30(6), 1184–1191 (2011)

    Article  Google Scholar 

  9. Li, Q., You, J., Zhang, D.: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39(9), 7600–7610 (2012)

    Article  Google Scholar 

  10. Aliahmad, B., Kumar, D.K.: Adaptive Higuchi’s dimension-based retinal vessel diameter measurement. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1308–1311 (2016)

    Google Scholar 

  11. Huang, F., Dashtbozorg, B., Yeung, A.K.S., Zhang, J., Berendschot, T.T.J.M., ter Haar Romeny, B.M.: A comparative study towards the establishment of an automatic retinal vessel width measurement technique. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 227–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_26

    Chapter  Google Scholar 

  12. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  13. Al-Diri, B., Hunter, A., Steel, D., Habib, M., Hudaib, T., Berry, S.: REVIEW - a reference data set for retinal vessel profiles. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2262–2265 (2008)

    Google Scholar 

  14. Li, W., Lu, J., Feng, J., Xu, C., Zhou, J., Tian, Q.: BridgeNet: a continuity-aware probabilistic network for age estimation. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1145–1154 (2019)

    Google Scholar 

  15. Chen, S., Zhang, C., Dong, M., Le, J., Rao, M.: Using ranking-CNN for age estimation. In: Proceedings of 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 742–751 (2017)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings on 3rd International Conference on Learning Representations (ICLR), pp. 1–15 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 62073325, Grant 62003343, Grant U1913601, and Grant U20A20224; in part by the National Key Research and Development Program of China under Grant 2019YFB1311700; in part by the Youth Innovation Promotion Association of CAS under Grant 2020140; and in part by the Strategic Priority Research Program of CAS under Grant XDB32040000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguang Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, RQ. et al. (2021). Vessel Width Estimation via Convolutional Regression. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics