Skip to main content

Training Automatic View Planner for Cardiac MR Imaging via Self-supervision by Spatial Relationship Between Views

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

View planning for the acquisition of cardiac magnetic resonance imaging (CMR) requires acquaintance with the cardiac anatomy and remains a challenging task in clinical practice. Existing approaches to its automation relied either on an additional volumetric image not typically acquired in clinic routine, or on laborious manual annotations of cardiac structural landmarks. This work presents a clinic-compatible and annotation-free system for automatic CMR view planning. The system mines the spatial relationship—more specifically, locates and exploits the intersecting lines—between the source and target views, and trains deep networks to regress heatmaps defined by these intersecting lines. As the spatial relationship is self-contained in properly stored data, e.g., in the DICOM format, the need for manual annotation is eliminated. Then, a multi-view planning strategy is proposed to aggregate information from the predicted heatmaps for all the source views of a target view, for a globally optimal prescription. The multi-view aggregation mimics the similar strategy practiced by skilled human prescribers. Experimental results on 181 clinical CMR exams show that our system achieves superior accuracy to existing approaches including conventional atlas-based and newer deep learning based ones, in prescribing four standard CMR views. The mean angle difference and point-to-plane distance evaluated against the ground truth planes are 5.98\(^\circ \) and 3.48 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  2. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  3. Blansit, K., Retson, T., Masutani, E., Bahrami, N., Hsiao, A.: Deep learning-based prescription of cardiac MRI planes. Radiol. Artif. Intell. 1(6), e180069 (2019)

    Google Scholar 

  4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  5. Frick, M., et al.: Fully automatic geometry planning for cardiac MR imaging and reproducibility of functional cardiac parameters. J. Magn. Reson. Imaging 34(2), 457–467 (2011)

    Google Scholar 

  6. Ginat, D.T., Fong, M.W., Tuttle, D.J., Hobbs, S.K., Vyas, R.C.: Cardiac imaging: part 1, MR pulse sequences, imaging planes, and basic anatomy. Am. J. Roentgenol. 197(4), 808–815 (2011)

    Article  Google Scholar 

  7. Herzog, B.: The CMR pocket guide App. Eur. Heart J. 38(6), 386–387 (2017)

    Article  Google Scholar 

  8. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kramer, C.M., Barkhausen, J., Bucciarelli-Ducci, C., Flamm, S.D., Kim, R.J., Nagel, E.: Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 22(1), 1–18 (2020)

    Article  Google Scholar 

  11. La Gerche, A., et al.: Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ. Cardiovasc. Imag. 6(2), 329–338 (2012)

    Google Scholar 

  12. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  13. Lu, X., et al.: Automatic view planning for cardiac MRI acquisition. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 479–486. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_59

    Chapter  Google Scholar 

  14. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.-M.: Cardiac MRI segmentation with strong anatomical guarantees. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 632–640. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_70

    Chapter  Google Scholar 

  15. Pfister, T., Charles, J., Zisserman, A.: Flowing ConvNets for human pose estimation in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1913–1921 (2015)

    Google Scholar 

  16. Robinson, R., et al.: Automatic quality control of cardiac MRI segmentation in large-scale population imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 720–727. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_82

    Chapter  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  19. Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovasc. Magn. Reson. 17(1), 1–8 (2015)

    Google Scholar 

  20. Wei, D., Li, C., Sun, Y.: Medical image segmentation and its application in cardiac MRI. In: Biomedical Image Understanding, Methods and Applications, pp. 47–89 (2015)

    Google Scholar 

  21. Wei, D., Sun, Y., Ong, S.H., Chai, P., Teo, L.L., Low, A.F.: A comprehensive 3-D framework for automatic quantification of late gadolinium enhanced cardiac magnetic resonance images. IEEE Trans. Biomed. Eng. 60(6), 1499–1508 (2013)

    Article  Google Scholar 

  22. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  23. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 850–859 (2019)

    Google Scholar 

  24. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

  25. Zotti, C., Luo, Z., Lalande, A., Jodoin, P.M.: Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J. Biomed. Health Inform. 23(3), 1119–1128 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), and Scientific and Technical Innovation 2030 - “New Generation Artificial Intelligence” Project (No. 2020AAA0104100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 283 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, D., Ma, K., Zheng, Y. (2021). Training Automatic View Planner for Cardiac MR Imaging via Self-supervision by Spatial Relationship Between Views. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics