Skip to main content

Task Transformer Network for Joint MRI Reconstruction and Super-Resolution

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

The core problem of Magnetic Resonance Imaging (MRI) is the trade off between acceleration and image quality. Image reconstruction and super-resolution are two crucial techniques in Magnetic Resonance Imaging (MRI). Current methods are designed to perform these tasks separately, ignoring the correlations between them. In this work, we propose an end-to-end task transformer network (T\(^2\)Net) for joint MRI reconstruction and super-resolution, which allows representations and feature transmission to be shared between multiple task to achieve higher-quality, super-resolved and motion-artifacts-free images from highly undersampled and degenerated MRI data. Our framework combines both reconstruction and super-resolution, divided into two sub-branches, whose features are expressed as queries and keys. Specifically, we encourage joint feature learning between the two tasks, thereby transferring accurate task information. We first use two separate CNN branches to extract task-specific features. Then, a task transformer module is designed to embed and synthesize the relevance between the two tasks. Experimental results show that our multi-task model significantly outperforms advanced sequential methods, both quantitatively and qualitatively.

C.-M. Feng and Y. Yan are contributed equally to this work. This work was done during the internship of C.-M. Feng at Inception Institute of Artificial Intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, J., Han, H., Shan, S., Chen, X.: FCSR-GAN : joint face completion and super-resolution via multi-task learning. IEEE Trans. Biomet, Behav. Identity Sci. 2(2), 109–121 (2019)

    Article  Google Scholar 

  2. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Resonan. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  3. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRIi super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 91–99. Springer (2018)

    Google Scholar 

  4. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)L

    Google Scholar 

  5. Feng, C.M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2021)

    Google Scholar 

  6. Feng, C.M., Wang, K., Lu, S., Xu, Y., Li, X.: Brain MRI super-resolution using coupled-projection residual network. Neurocomputing 456, 190–199 (2021)

    Google Scholar 

  7. Feng, C.M., Yan, Y., Chen, G., Fu, H., Xu, Y., Shao, L.: Accelerated multi-modal MR imaging with transformers (2021)

    Google Scholar 

  8. Feng, C.M., Yang, Z., Chen, G., Xu, Y., Shao, L.: Dual-octave convolution for accelerated parallel MR image reconstruction. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  9. Feng, C.M., Yang, Z., Fu, H., Xu, Y., Yang, J., Shao, L.: DONet: dual-octave network for fast MR image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  10. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn, Resonan. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  11. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626. IEEE (2019)

    Google Scholar 

  12. Kim, S., Hori, T., Watanabe, S.: Joint CTC-attention based end-to-end speech recognition using multi-task learning. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4835–4839. IEEE (2017)

    Google Scholar 

  13. Lai, Z., et al.: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med. Image Anal. 27, 93–104 (2016)

    Article  Google Scholar 

  14. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  15. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  16. Lyu, Q., Shan, H., Wang, G.: MRI super-resolution with ensemble learning and complementary priors. IEEE Trans. Comput. Imag. 6, 615–624 (2020)

    Article  Google Scholar 

  17. Lyu, Q., You, C., Shan, H., Zhang, Y., Wang, G.: Super-resolution MRI and CT through gan-circle. In: Developments in X-Ray Tomography XII, vol. 11113, p. 111130X. International Society for Optics and Photonics (2019)

    Google Scholar 

  18. Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imag. Graph. 71, 30–39 (2019)

    Article  Google Scholar 

  19. Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L., Pauly, J.M.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2018)

    Article  Google Scholar 

  20. Nakarmi, U., Wang, Y., Lyu, J., Liang, D., Ying, L.: A kernel-based low-rank (KLR) model for low-dimensional manifold recovery in highly accelerated dynamic MRI. IEEE Trans. Medi. Imag. 36(11), 2297–2307 (2017)

    Article  Google Scholar 

  21. Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., de Marvao, A., Cook, S., O’Regan, D., Rueckert, D.: Multi-input cardiac image super-resolution using convolutional neural networks. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 246–254. Springer (2016). https://doi.org/10.1007/10704282

  22. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Medical Imag. 38(1), 280–290 (2018)

    Article  Google Scholar 

  23. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imag. 30(5), 1028–1041 (2010)

    Article  Google Scholar 

  24. Shi, J., Liu, Q., Wang, C., Zhang, Q., Ying, S., Xu, H.: Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Phys. Med. Biol. 63(8), 085011 (2018)

    Google Scholar 

  25. Shin, P.J., Larson, P.E., Ohliger, M.A., Elad, M., Pauly, J.M., Vigneron, D.B., Lustig, M.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Resonan. Med. 72(4), 959–970 (2014)

    Article  Google Scholar 

  26. Wang, S., Cheng, H., Ying, L., Xiao, T., Ke, Z., Zheng, H., Liang, D.: Deepcomplexmri: exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn. Resonan. Imag. 68, 136–147 (2020)

    Article  Google Scholar 

  27. Wang, Y.H., Qiao, J., Li, J.B., Fu, P., Chu, S.C., Roddick, J.F.: Sparse representation-based MRI super-resolution reconstruction. Measurement 47, 946–953 (2014)

    Article  Google Scholar 

  28. Yang, G., Yu, S., Dong, H., Slabaugh, G., Dragotti, P.L., Ye, X., Liu, F., Arridge, S., Keegan, J., Guo, Y., et al.: Dagan: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imag. 37(6), 1310–1321 (2017)

    Article  Google Scholar 

  29. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-net for compressive sensing MRI. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  30. Zhan, Z., Cai, J.F., Guo, D., Liu, Y., Chen, Z., Qu, X.: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans. Biomed. Eng. 63(9), 1850–1861 (2015)

    Article  Google Scholar 

  31. Zhang, M., Liu, W., Ma, H.: Joint license plate super-resolution and recognition in one multi-task gan framework. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1443–1447. IEEE (2018)

    Google Scholar 

  32. Zhang, X., Lam, E.Y., Wu, E.X., Wong, K.K.Y.: Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images. In: Gao, X., Müller, H., Loomes, M.J., Comley, R., Luo, S. (eds.) MIMI 2007. LNCS, vol. 4987, pp. 51–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79490-5_8

    Chapter  Google Scholar 

  33. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, CM., Yan, Y., Fu, H., Chen, L., Xu, Y. (2021). Task Transformer Network for Joint MRI Reconstruction and Super-Resolution. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics