Skip to main content

Generator Versus Segmentor: Pseudo-healthy Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

This paper investigates the problem of pseudo-healthy synthesis that is defined as synthesizing a subject-specific pathology-free image from a pathological one. Recent approaches based on Generative Adversarial Network (GAN) have been developed for this task. However, these methods will inevitably fall into the trade-off between preserving the subject-specific identity and generating healthy-like appearances. To overcome this challenge, we propose a novel adversarial training regime, Generator versus Segmentor (GVS), to alleviate this trade-off by a divide-and-conquer strategy. We further consider the deteriorating generalization performance of the segmentor throughout the training and develop a pixel-wise weighted loss by muting the well-transformed pixels to promote it. Moreover, we propose a new metric to measure how healthy the synthetic images look. The qualitative and quantitative experiments on the public dataset BraTS demonstrate that the proposed method outperforms the existing methods. Besides, we also certify the effectiveness of our method on datasets LiTS. Our implementation and pre-trained networks are publicly available at https://github.com/Au3C2/Generator-Versus-Segmentor.

Y. Zhang and C. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/baumgach/vagan-code.

  2. 2.

    https://github.com/xiat0616/pseudo-healthy-synthesis.

References

  1. Andermatt, S., Horváth, A., Pezold, S., Cattin, P.: Pathology segmentation using distributional differences to images of healthy origin. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 228–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_23

    Chapter  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Google Scholar 

  3. Baumgartner, C.F., Koch, L.M., Can Tezcan, K., Xi Ang, J., Konukoglu, E.: Visual feature attribution using Wasserstein GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8309–8319 (2018)

    Google Scholar 

  4. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTs). arXiv preprint arXiv:1901.04056 (2019)

  5. Bowles, C., et al.: Pseudo-healthy image synthesis for white matter lesion segmentation. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 87–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46630-9_9

    Chapter  Google Scholar 

  6. Bowles, C., et al.: Brain lesion segmentation through image synthesis and outlier detection. NeuroImage Clin. 16, 643–658 (2017)

    Google Scholar 

  7. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv preprint arXiv:1806.04972 (2018)

  8. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Sato, D., et al.: A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105751P. International Society for Optics and Photonics (2018)

    Google Scholar 

  11. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Google Scholar 

  12. Sun, L., Wang, J., Huang, Y., Ding, X., Greenspan, H., Paisley, J.: An adversarial learning approach to medical image synthesis for lesion detection. IEEE J. Biomed. Health Inf. (2020)

    Google Scholar 

  13. Tsunoda, Y., Moribe, M., Orii, H., Kawano, H., Maeda, H.: Pseudo-normal image synthesis from chest radiograph database for lung nodule detection. In: Kim, Y.S., Ryoo, Y.J., Jang, M., Bae, Y.-C. (eds.) Advanced Intelligent Systems. AISC, vol. 268, pp. 147–155. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05500-8_14

    Chapter  Google Scholar 

  14. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  15. Xia, T., Chartsias, A., Tsaftaris, S.A.: Pseudo-healthy synthesis with pathology disentanglement and adversarial learning. Med. Image Anal. 64, 101719 (2020)

    Google Scholar 

  16. Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_76

    Chapter  Google Scholar 

  17. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

  18. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Key Research and Development Program of China (No. 2019YFC0118101), in part by National Natural Science Foundation of China under Grants U19B2031, 61971369, in part by Fundamental Research Funds for the Central Universities 20720200003, in part by the Science and Technology Key Project of Fujian Province, China (No. 2019HZ020009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2021). Generator Versus Segmentor: Pseudo-healthy Synthesis. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics