Skip to main content

InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

For the task of metal artifact reduction (MAR), although deep learning (DL)-based methods have achieved promising performances, most of them suffer from two problems: 1) the CT imaging geometry constraint is not fully embedded into the network during training, leaving room for further performance improvement; 2) the model interpretability is lack of sufficient consideration. Against these issues, we propose a novel interpretable dual domain network, termed as InDuDoNet, which combines the advantages of model-driven and data-driven methodologies. Specifically, we build a joint spatial and Radon domain reconstruction model and utilize the proximal gradient technique to design an iterative algorithm for solving it. The optimization algorithm only consists of simple computational operators, which facilitate us to correspondingly unfold iterative steps into network modules and thus improve the interpretablility of the framework. Extensive experiments on synthesized and clinical data show the superiority of our InDuDoNet. Code is available in https://github.com/hongwang01/InDuDoNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We utilize a CNN to flexibly learn \(\widetilde{X}\) and \(\widetilde{Y}\) from training data as shown in Fig. 1.

  2. 2.

    https://github.com/odlgroup/odl.

  3. 3.

    More analysis on network parameter and testing time are in supplementary material.

  4. 4.

    More comparisons of MAR and bone segmentation are in supplementary material.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, Z., Ye, D.H., Srivastava, S., Thibault, J.B., Sauer, K., Bouman, C.: Prior-guided metal artifact reduction for iterative X-ray computed tomography. IEEE Trans. Med. Imaging 38(6), 1532–1542 (2018)

    Article  Google Scholar 

  3. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.: Metal streak artifacts in X-ray computed tomography: a simulation study. IEEE Trans. Nuclear Sci. 46(3), 691–696 (1999)

    Article  Google Scholar 

  4. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghani, M.U., Karl, W.C.: Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Trans. Comput. Imaging 6, 181–193 (2019)

    Article  Google Scholar 

  6. Gjesteby, L., Yang, Q., Xi, Y., Zhou, Y., Zhang, J., Wang, G.: Deep learning methods to guide CT image reconstruction and reduce metal artifacts. In: Medical Imaging 2017: Physics of Medical Imaging, vol. 10132, p. 101322W. International Society for Optics and Photonics (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, X., Wang, J., Tang, F., Zhong, T., Zhang, Y.: Metal artifact reduction on cervical CT images by deep residual learning. Biomed. Eng. Online 17(1), 1–15 (2018)

    Article  Google Scholar 

  9. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12341–12351 (2021)

    Google Scholar 

  10. Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)

    Article  Google Scholar 

  11. Liao, H., et al.: Generative mask pyramid network for CT/CBCT metal artifact reduction with joint projection-sinogram correction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 77–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_9

    Chapter  Google Scholar 

  12. Liao, H., Lin, W.A., Zhou, S.K., Luo, J.: ADN: artifact disentanglement network for unsupervised metal artifact reduction. IEEE Trans. Med. Imaging 39(3), 634–643 (2019)

    Article  Google Scholar 

  13. Lin, W.A., et al.: DuDoNet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)

    Google Scholar 

  14. Liu, P., et al.: Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. arXiv preprint arXiv:2012.08721 (2020)

  15. Lyu, Y., Lin, W.-A., Liao, H., Lu, J., Zhou, S.K.: Encoding metal mask projection for metal artifact reduction in computed tomography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 147–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_15

    Chapter  Google Scholar 

  16. Mehranian, A., Ay, M.R., Rahmim, A., Zaidi, H.: X-ray CT metal artifact reduction using wavelet domain \( l_0\) sparse regularization. IEEE Trans. Med. Imaging 32(9), 1707–1722 (2013)

    Article  Google Scholar 

  17. Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10), 5482–5493 (2010)

    Article  Google Scholar 

  18. Park, H.S., Lee, S.M., Kim, H.P., Seo, J.K., Chung, Y.E.: CT sinogram-consistency learning for metal-induced beam hardening correction. Med. Phys. 45(12), 5376–5384 (2018)

    Article  Google Scholar 

  19. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Wang, G., Ye, J.C., Mueller, K., Fessler, J.A.: Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging 37(6), 1289–1296 (2018)

    Article  Google Scholar 

  22. Wang, H., et al.: Structural residual learning for single image rain removal. Knowl.-Based Syst. 213, 106595 (2021)

    Article  Google Scholar 

  23. Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020)

    Google Scholar 

  24. Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021)

    Google Scholar 

  25. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  26. Xie, Q., Zhou, M., Zhao, Q., Xu, Z., Meng, D.: MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3015691

  27. Yan, K., et al.: Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9261–9270 (2018)

    Google Scholar 

  28. Yu, L., Zhang, Z., Li, X., Xing, L.: Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans. Med. Imaging 40(1), 228–238 (2020)

    Article  Google Scholar 

  29. Yue, Z., Yong, H., Zhao, Q., Zhang, L., Meng, D.: Variational image restoration network. arXiv preprint arXiv:2008.10796 (2020)

  30. Zhang, H., Dong, B., Liu, B.: A reweighted joint spatial-radon domain CT image reconstruction model for metal artifact reduction. SIAM J. Imaging Sci. 11(1), 707–733 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, H., Wang, L., Li, L., Cai, A., Hu, G., Yan, B.: Iterative metal artifact reduction for X-ray computed tomography using unmatched projector/backprojector pairs. Med. Phys. 43(6Part1), 3019–3033 (2016)

    Article  Google Scholar 

  32. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D Program of China (2020YFA0713900), the Macao Science and Technology Development Fund under Grant 061/2020/A2, Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), the Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project (No. 2020AAA0104100), the China NSFC projects (62076196, 11690011, 61721002, U1811461).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deyu Meng or Yefeng Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 967 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2021). InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics