Skip to main content

Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Longitudinal infant dedicated cerebellum atlases play a fundamental role in characterizing and understanding the dynamic cerebellum development during infancy. However, due to the limited spatial resolution, low tissue contrast, tiny folding structures, and rapid growth of the cerebellum during this stage, it is challenging to build such atlases while preserving clear folding details. Furthermore, the existing atlas construction methods typically independently build discrete atlases based on samples for each age group without considering the within-subject temporal consistency, which is critical for large-scale longitudinal studies. To fill this gap, we propose an age-conditional multi-stage learning framework to construct longitudinally consistent 4D infant cerebellum atlases. Specifically, 1) A joint affine and deformable atlas construction framework is proposed to accurately build temporally continuous atlases based on the entire cohort, and rapidly warp the new images to the atlas space; 2) A longitudinal constraint is employed to enforce the within-subject temporal consistency during atlas building; 3) A Correntropy based regularization loss is further exploited to enhance the robustness of our framework. Our atlases are constructed based on 405 longitudinal scans from 187 healthy infants with age ranging from 6 to 27 months, and are compared to the atlases built by state-of-the-art algorithms. Results demonstrate that our atlases preserve more structural details and fine-grained cerebellum folding patterns, which ensure higher accuracy in subsequent atlas-based registration and segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson, E.C., et al.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)

    Google Scholar 

  2. Kase, C., Norrving, B., Levine, S., et al.: Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke 24(1), 76–83 (1993)

    Google Scholar 

  3. Davie, C., Barker, G., Webb, S., et al.: Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(6), 1583–1592 (1995)

    Google Scholar 

  4. Klockgether, T.: The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7(2), 101 (2008)

    Google Scholar 

  5. Desmond, J.E., Gabrieli, J.D., Glover, G.H.: Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7(4), 368–376 (1998)

    Google Scholar 

  6. Riva, D., Giorgi, C.: The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123(5), 1051–1061 (2000)

    Google Scholar 

  7. Stoodley, C.J., Schmahmann, J.D.: Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2), 489–501 (2009)

    Google Scholar 

  8. Seidman, L.J., Valera, E.M., Makris, N.: Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57(11), 1263–1272 (2005)

    Google Scholar 

  9. Bishop, D.V.: Cerebellar abnormalities in developmental dyslexia: cause, correlate or consequence? (2002)

    Google Scholar 

  10. Courchesne, E., Saitoh, O., Yeung-Courchesne, R., et al.: Abnormality of cerebellar Vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. 162(1), 123–130 (1994)

    Google Scholar 

  11. Knickmeyer, R.C., Gouttard, S., Kang, C., et al.: A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28(47), 12176–12182 (2008)

    Google Scholar 

  12. Diedrichsen, J., Balsters, J.H., Flavell, J., Cussans, E., Ramnani, N.: A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1), 39–46 (2009)

    Google Scholar 

  13. Diedrichsen, J.: A spatially unbiased atlas template of the human cerebellum. Neuroimage 33(1), 127–138 (2006)

    Google Scholar 

  14. Schmahmann, J.D., Doyon, J., McDonald, D., et al.: Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10(3), 233–260 (1999)

    Google Scholar 

  15. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)

    Google Scholar 

  16. Schuh, A., Makropoulos, A., Robinson, E.C., et al.: Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. bioRxiv (2018) 251512

    Google Scholar 

  17. Shi, F., et al.: Infant brain atlases from neonates to 1- and 2-year-olds. PloS ONE 6(4), e18746 (2011)

    Google Scholar 

  18. Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE TMI 35(12), 2568–2577 (2016)

    Google Scholar 

  19. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

  20. Fan, J., Cao, X., Xue, Z., Yap, P.T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_83

  21. Fan, J., Cao, X., Wang, Q., Yap, P.T., Shen, D.: Adversarial learning for mono-or multi-modal registration. Med. Image Anal. 58, 101545 (2019)

    Google Scholar 

  22. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: CVPR, pp. 4224–4233 (2019)

    Google Scholar 

  23. Wei, D., et al.: Deep morphological simplification network (MS-Net) for guided registration of brain magnetic resonance images. Pattern Recogn. 100, 107171 (2020)

    Google Scholar 

  24. Dalca, A.V., Rakic, M., Guttag, J., Sabuncu, M.R.: Learning conditional deformable templates with convolutional networks. In: NeurIPS (2019)

    Google Scholar 

  25. Hill, J., et al.: A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J. Neurosci. 30(6), 2268–2276 (2010)

    Google Scholar 

  26. Li, G., et al.: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cortex 23(11), 2724–2733 (2013)

    Google Scholar 

  27. Triulzi, F., Parazzini, C., Righini, A.: MRI of fetal and neonatal cerebellar development. In: Seminars in Fetal and Neonatal Medicine, vol. 10, pp. 411–420. Elsevier (2005)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  29. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov, D., et al. (eds.) DLMIA 2018, ML-CDS 2018. LNCS, vol. 11045, pp. 101–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_12

  30. Chen, L., Qu, H., Zhao, J., Chen, B., Principe, J.C.: Efficient and robust deep learning with correntropy-induced loss function. Neural Comput. Appl. 27(4), 1019–1031 (2016)

    Google Scholar 

  31. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Google Scholar 

  32. Howell, B.R., et al.: The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. NeuroImage 185, 891–905 (2019)

    Google Scholar 

  33. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23, S139–S150 (2004)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants (MH116225, MH109773, MH117943, and MH123202). This work also utilizes approaches developed by an NIH grant (1U01MH110274) and the efforts of the UNC/UMN Baby Connectome Project Consortium.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Li Wang or Gang Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 149 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L. et al. (2021). Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics