Skip to main content

Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Self-training based unsupervised domain adaptation (UDA) has shown great potential to address the problem of domain shift, when applying a trained deep learning model in a source domain to unlabeled target domains. However, while the self-training UDA has demonstrated its effectiveness on discriminative tasks, such as classification and segmentation, via the reliable pseudo-label selection based on the softmax discrete histogram, the self-training UDA for generative tasks, such as image synthesis, is not fully investigated. In this work, we propose a novel generative self-training (GST) UDA framework with continuous value prediction and regression objective for cross-domain image synthesis. Specifically, we propose to filter the pseudo-label with an uncertainty mask, and quantify the predictive confidence of generated images with practical variational Bayes learning. The fast test-time adaptation is achieved by a round-based alternative optimization scheme. We validated our framework on the tagged-to-cine magnetic resonance imaging (MRI) synthesis problem, where datasets in the source and target domains were acquired from different scanners or centers. Extensive validations were carried out to verify our framework against popular adversarial training UDA methods. Results show that our GST, with tagged MRI of test subjects in new target domains, improved the synthesis quality by a large margin, compared with the adversarial training UDA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It can be rewritten as \(\mathop {\mathrm {min}}\limits _{\mathbf {w}}~ \mathcal {F}=\{\sum \limits _{{{t}}\in {{T}}}{\sum \limits _{n=1}^{N}} \frac{1}{\sigma ^2_{t,n}}||(\hat{y}_{t,n}-\tilde{y}_{t,n})m_{t,n}||^2_2+\beta (\sum \limits _{{{t}}\in {{T}}}{\sum \limits _{n=1}^{N}} \text {log} \sigma ^2_{t,n}-C)\}\). Since \(\beta ,C\ge 0\), an upper bound on \(\mathcal {F}\) can be obtained as \(\mathcal {F}\le \mathcal {L}_{reg}^t\).

References

  1. Che, T., et al.: Deep verifier networks: verification of deep discriminative models with deep generative models. In: AAAI (2021)

    Google Scholar 

  2. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2020)

    Google Scholar 

  3. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  4. Fruehwirt, W., et al.: Bayesian deep neural networks for low-cost neurophysiological markers of Alzheimer’s disease severity. arXiv preprint arXiv:1812.04994 (2018)

  5. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 (2015)

  6. Grandvalet, Y., Bengio, Y.: Entropy regularization (2006)

    Google Scholar 

  7. Han, L., Zou, Y., Gao, R., Wang, L., Metaxas, D.: Unsupervised domain adaptation via calibrating uncertainties. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 99–102 (2019)

    Google Scholar 

  8. Hu, S., Worrall, D., Knegt, S., Veeling, B., Huisman, H., Welling, M.: Supervised uncertainty quantification for segmentation with multiple annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_16

    Chapter  Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  10. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  11. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  12. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010)

    Google Scholar 

  13. Le, Q.V., Smola, A.J., Canu, S.: Heteroscedastic Gaussian process regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 489–496 (2005)

    Google Scholar 

  14. Liu, X., et al.: Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing 388, 34–44 (2020)

    Article  Google Scholar 

  15. Liu, X., et al.: Domain generalization under conditional and label shifts via variational Bayesian inference. In: IJCAI (2021)

    Google Scholar 

  16. Liu, X., Hu, B., Liu, X., Lu, J., You, J., Kong, L.: Energy-constrained self-training for unsupervised domain adaptation. In: ICPR (2020)

    Google Scholar 

  17. Liu, X., et al.: Subtype-aware unsupervised domain adaptation for medical diagnosis. In: AAAI (2021)

    Google Scholar 

  18. Liu, X., Xing, F., Yang, C., El Fakhri, G., Woo, J.: Adapting off-the-shelf source segmenter for target medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, LNCS 12902, pp. 549–559. Springer, Cham (2021)

    Google Scholar 

  19. Liu, X., Xing, F., El Fakhri, G., Woo, J.: A unified conditional disentanglement framework for multimodal brain MR image translation. In: ISBI, pp. 10–14. IEEE (2021)

    Google Scholar 

  20. Liu, X., et al.: Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis. In: ISBI (2021)

    Google Scholar 

  21. Liu, X., Xing, F., Yang, C., Kuo, C.-C.J., El Fakhri, G., Woo, J.: Symmetric-constrained irregular structure inpainting for brain MRI registration with tumor pathology. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 80–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_8

    Chapter  Google Scholar 

  22. Liu, X., Zou, Y., Song, Y., Yang, C., You, J., Kumar, B.V.K.V.: Ordinal regression with neuron stick-breaking for medical diagnosis. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 335–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_23

    Chapter  Google Scholar 

  23. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 415–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_25

    Chapter  Google Scholar 

  24. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp. 55–60. IEEE (1994)

    Google Scholar 

  25. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  26. Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for self-training based domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 532–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_32

    Chapter  Google Scholar 

  27. Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: adapting object detectors from image to video. In: NIPS (2012)

    Google Scholar 

  28. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  29. Wang, J., et al.: Automated interpretation of congenital heart disease from multi-view echocardiograms. Med. Image Anal. 69, 101942 (2021)

    Article  Google Scholar 

  30. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  31. Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. arXiv preprint arXiv:2010.03622 (2021)

  32. Zhu, X.: Semi-supervised learning tutorial. In: ICML Tutorial (2007)

    Google Scholar 

  33. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NIH R01DC014717, R01DC018511, and R01CA133015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2021). Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics