Skip to main content

Progressively Normalized Self-Attention Network for Video Polyp Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Existing video polyp segmentation(VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs cannot fully exploit the global temporal and spatial information in successive video frames, resulting in false positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (\(\sim \)140fps) on a single RTX 2080 GPU and no post-processing. Our PNS-Net is based solely on a basic normalized self-attention block, equipping with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.

G.-P. Ji and Y.-C. Chou—Contributed equally. Code: http://dpfan.net/pnsnet/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We set \(H^{l}=\frac{H'}{4}\), \(W^{l}=\frac{W'}{4}\), \(C^{l}=24\), \(H^{h}=\frac{H'}{8}\), \(W^{h}=\frac{W'}{8}\), and \(C^{h}=32\).

References

  1. Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. In: IEEE EMBC, pp. 69–72 (2018)

    Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. CMIG 43, 99–111 (2015)

    Google Scholar 

  4. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. PR 45(9), 3166–3182 (2012)

    Google Scholar 

  5. Brandao, P., et al.: Fully convolutional neural networks for polyp segmentation in colonoscopy. In: MICAD, vol. 10134, p. 101340F (2017)

    Google Scholar 

  6. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: IEEE ICCV, pp. 4548–4557 (2017)

    Google Scholar 

  7. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE TPAMI 66, 9909–9917 (2021)

    Google Scholar 

  8. Fan, D.P., Ji, G.P., Qin, X., Cheng, M.M.: Cognitive vision inspired object segmentation metric and loss function. SSI (2020)

    Google Scholar 

  9. Fan, D.P., et al.: Pranet: parallel reverse attention network for polyp segmentation. In: MICCAI, pp. 263–273 (2020)

    Google Scholar 

  10. Fang, Y., Chen, C., Yuan, Y., Tong, K.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_34

    Chapter  Google Scholar 

  11. Gu, Y., Wang, L., Wang, Z., Liu, Y., Cheng, M.M., Lu, S.P.: Pyramid constrained self-attention network for fast video salient object detection. AAAI 34, 10869–10876 (2020)

    Article  Google Scholar 

  12. Guo, L., Liu, J., Zhu, X., Yao, P., Lu, S., Lu, H.: Normalized and geometry-aware self-attention network for image captioning. In: IEEE CVPR, pp. 10327–10336 (2020)

    Google Scholar 

  13. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  14. Jha, D., et al.: Resunet++: an advanced architecture for medical image segmentation. In: IEEE ISM, pp. 225–2255 (2019)

    Google Scholar 

  15. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. NIPS 24, 109–117 (2011)

    Google Scholar 

  16. Liu, S., Huang, D., et al.: Receptive field block net for accurate and fast object detection. In: ECCV, pp. 385–400 (2018)

    Google Scholar 

  17. Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Automated polyp detection in colon capsule endoscopy. IEEE TMI 33(7), 1488–1502 (2014)

    Google Scholar 

  18. Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: Psi-Net: shape and boundary aware joint multi-task deep network for medical image segmentation. In: IEEE EMBC, pp. 7223–7226 (2019)

    Google Scholar 

  19. Puyal, J.G.B., et al.: Endoscopic polyp segmentation using a hybrid 2D/3D CNN. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 295–305. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_29

    Chapter  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE TMI 35(2), 630–644 (2015)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  24. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: IEEE CVPR, pp. 5791–5800 (2020)

    Google Scholar 

  25. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE JBHI 21(1), 65–75 (2016)

    Google Scholar 

  26. Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 253–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_25

    Chapter  Google Scholar 

  27. Zhang, R., Zheng, Y., Poon, C.C., Shen, D., Lau, J.Y.: Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. PR 83, 209–219 (2018)

    Google Scholar 

  28. Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: MICCAI (2021)

    Google Scholar 

  29. Zhong, J., Wang, W., Wu, H., Wen, Z., Qin, J.: PolypSeg: an efficient context-aware network for polyp segmentation from colonoscopy videos. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 285–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_28

    Chapter  Google Scholar 

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: A nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, GP. et al. (2021). Progressively Normalized Self-Attention Network for Video Polyp Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics