Skip to main content

Abstract

Construction of integrated neural-symbolic systems is an actual and challenging task. Such hybrid systems combine advantages of connectionist and symbolic approaches. In particular, neural-symbolic systems are characterized by robust learning and distributed neural computations. At the same time, they can be interpreted, described and analyzed in logical terms. Especially high interpretability is important for Decision Support Systems that operate with symbolic structures describing the problem situation, stakeholders, assessment criteria and where the reasoning process should be transparent for the Decision Maker. Such requirements bring the task of designing integrated neural-symbolic Decision Support Systems to the higher level of complexity. This paper examines underlying algorithms of a specific part of Decision Support Systems that is aggregation of experts’ assessments to make the choice among alternative solutions of the given problem. Such fuzzy and uncertain assessments are often represented as 2-tuple model or its derivatives and algorithms that aggregate them are often called operator. We demonstrate that the simple aggregation operator can be expressed in a fully connectionist form with the help of Neural Turing Machine architecture. This result sheds new light on the way principles of symbolic computation can be implemented by connectionist mechanisms.

The reported study was funded by RFBR, project number 19–37-90058.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matzkevich, I., Abramson, B.: Decision analytic networks in artificial intelligence. Manage. Sci. 41(1), 1–22 (1995)

    Article  Google Scholar 

  2. Silverman, B.G.: Unifying expert systems and the decision sciences. Oper. Res. 42(3), 393–413 (1994)

    Article  Google Scholar 

  3. Kelley, T.D.: Symbolic and sub-symbolic representations in computational models of human cognition: what can be learned from biology? Theory Psychol. 13(6), 847–860 (2003)

    Article  Google Scholar 

  4. Pylyshyn, Z.W.: Computing in Cognitive Science. University of Western Ontario, Centre for Cognitive Science, London (1988)

    Google Scholar 

  5. Turek, M.: Explainable Artificial Intelligence (XAI) (2018). https://www.darpa.mil/program/explainable- artificial- intelligence. Accessed 27 June 2020

  6. Smolensky, P., Legendre, G.: The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (Cognitive Architecture), vol. 1. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  7. Plate, T.A.: Holographic reduced representations. IEEE Trans. Neural Netw. 6(3), 623–641 (1995)

    Article  Google Scholar 

  8. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009)

    Article  Google Scholar 

  9. Schlegel, K., Neubert, P., Protzel, P.: A comparison of vector symbolic architectures. arXiv preprint arXiv:2001.11797 (2020)

  10. Harnad, S.: The symbol grounding problem. Physica D 42(1–3), 335–346 (1990)

    Article  Google Scholar 

  11. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Psychology Press, Hove (2014)

    Book  Google Scholar 

  12. Sun, R., Peterson, T.: A hybrid agent architecture for reactive sequential decision making. Connectionist symbolic integration: From unified to hybrid approaches, pp.113–138 (1997)

    Google Scholar 

  13. Avery, E., Kelley, T.D., Davani, D.: May. Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. In: 15th Annual Conference on Behavioral Representation in Modeling and Simulation (BRIMS) (2006)

    Google Scholar 

  14. Kelley, T., Avery, E., Long, L., Dimperio, E.: A hybrid symbolic and sub-symbolic intelligent system for mobile robots. In: AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference, p. 1976 (2009)

    Google Scholar 

  15. Parvar, J., Lowe, D., Emsley, M., Duff, R.: Neural networks as a decision support system for the decision to bid process. In: Proceedings ARCOM Conference, vol. 1, pp. 209–217 (2000)

    Google Scholar 

  16. Delen, D., Sharda, R.: Artificial neural networks in decision support systems. In: Burstein, F., Holsapple, C.W. (eds.) Handbook on Decision Support Systems 1, pp. 557–580. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-48713-5_26

    Chapter  Google Scholar 

  17. Power, D.J., Sharda, R.: Model-driven decision support systems: concepts and research directions. Decis. Support Syst. 43(3), 1044–1061 (2007)

    Article  Google Scholar 

  18. Power, D.J.: Decision Support Systems: Concepts and Resources for Managers. Greenwood Publishing Group, Westport (2002)

    Google Scholar 

  19. Golmohammadi, D.: Neural network application for fuzzy multi-criteria decision making problems. Int. J. Prod. Econ. 131(2), 490–504 (2011)

    Article  Google Scholar 

  20. Yoon, K., Hwang, C.L.: TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)–A Multiple Attribute Decision Making, W: Multiple Attribute Decision Making–Methods and Applications, A State-of-the-at Survey. Springer, Heidelberg (1981).https://doi.org/10.1007/978-3-642-48318-9

    Google Scholar 

  21. Figueira, J.R., Mousseau, V., Roy, B.: ELECTRE methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple criteria decision analysis. ISORMS, vol. 233, pp. 155–185. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_5

    Chapter  Google Scholar 

  22. Demidovskij, A.V., Babkin, E.A.: Developing a distributed linguistic decision making system. Bus. Inf. 13(1), 18–32 (2019)

    Google Scholar 

  23. Zhang, H., Wu, Y., Gao, J., Xu, C.: A method for multi-criteria group decision making with 2-tuple linguistic information based on cloud model. Information 8(2), 54 (2017)

    Article  Google Scholar 

  24. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)

    Article  Google Scholar 

  25. Wei, C., Liao, H.: A multigranularity linguistic group decision-making method based on hesitant 2-tuple sets. Int. J. Intell. Syst. 31(6), 612–634 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wei, G., Lu, M., Alsaadi, F.E., Hayat, T., Alsaedi, A.: Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 33(2), 1129–1142 (2017)

    Article  Google Scholar 

  27. Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2011)

    Article  Google Scholar 

  28. Liu, P., Chen, S.M.: Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inf. Sci. 430, 599–619 (2018)

    Article  MathSciNet  Google Scholar 

  29. Wei, G., Alsaadi, F.E., Hayat, T., Alsaedi, A.: Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft. Comput. 22(3), 989–1002 (2016). https://doi.org/10.1007/s00500-016-2403-8

    Article  MATH  Google Scholar 

  30. Wang, J.H., Hao, J.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)

    Article  Google Scholar 

  31. Demidovskij, A., Babkin, E.: Designing a neural network primitive for conditional structural transformations. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds.) Artificial Intelligence: 18th Russian Conference, RCAI 2020, Moscow, Russia, October 10–16, 2020, Proceedings, pp. 117–133. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59535-7_9

    Chapter  Google Scholar 

  32. Demidovskij, A., Babkin, E.: Designing arithmetic neural primitive for sub-symbolic aggregation of linguistic assessments. In: Journal of Physics: Conference Series, vol. 1680, No. 1. IOP Publishing, December (2020)

    Google Scholar 

  33. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  34. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  35. Zaremba, W., Sutskever, I.: Reinforcement learning neural turing machines-revised. arXiv preprint arXiv:1505.00521 (2015)

  36. Chen, X., et al.: Sequential recommendation with user memory networks. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 108–116, February 2018

    Google Scholar 

  37. Grefenstette, E., Hermann, K.M., Suleyman, M., Blunsom, P.: Learning to transduce with unbounded memory. arXiv preprint arXiv:1506.02516 (2015)

  38. Collier, M., Beel, J.: Implementing neural turing machines. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 94–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_10

    Chapter  Google Scholar 

  39. Castellini, J.: Learning numeracy: binary arithmetic with neural turing machines. arXiv preprint arXiv:1904.02478 (2019)

  40. Demidovskij, A.: Neural turing machine: open-source project. https://github.com/demid5111/NeuralTuringMachine Accessed 7 Apr 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Demidovskij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demidovskij, A., Babkin, E. (2022). Neural Multigranular 2-tuple Average Operator in Neural-Symbolic Decision Support Systems. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fifth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’21). IITI 2021. Lecture Notes in Networks and Systems, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-030-87178-9_35

Download citation

Publish with us

Policies and ethics