Skip to main content

On Fair Covering and Hitting Problems

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

In this paper, we study two generalizations of Vertex Cover and Edge Cover, namely Colorful Vertex Cover and Colorful Edge Cover. In the Colorful Vertex Cover problem, given an n-vertex edge-colored graph G with colors from \(\{1, \ldots , \omega \}\) and coverage requirements \(r_1, r_2, \ldots , r_\omega \), the goal is to find a minimum-sized set of vertices that are incident on at least \(r_i\) edges of color i, for each \(1 \le i \le \omega \), i.e., we need to cover at least \(r_i\) edges of color i. Colorful Edge Cover is similar to Colorful Vertex Cover except here we are given a vertex-colored graph and the goal is to cover at least \(r_i\) vertices of color i, for each \(1 \le i \le \omega \), by a minimum-sized set of edges. These problems have several applications in fair covering and hitting of geometric set systems involving points and lines that are divided into multiple groups. Here, “fairness” ensures that the coverage (resp. hitting) requirement of every group is fully satisfied.

We obtain a \((2+\epsilon )\)-approximation for the Colorful Vertex Cover problem in time \(n^{O(\omega /\epsilon )}\), i.e., we obtain an O(1)-approximation in polynomial time for constant number of colors. Next, for the Colorful Edge Cover problem, we design an \(O(\omega n^3)\) time exact algorithm, via a chain of reductions to a matching problem. For all intermediate problems in this chain of reductions, we design polynomial time algorithms, which might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “fair” stresses on the fact, in an abstract manner, that the resources should be divided evenly among different groups.

References

  1. Anegg, G., Angelidakis, H., Kurpisz, A., Zenklusen, R.: A technique for obtaining true approximations for k-center with covering constraints. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 52–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_5

    Chapter  Google Scholar 

  2. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.R.: A constant approximation for colorful k-center. In: 27th Annual European Symposium on Algorithms, ESA 2019, volume 144 of LIPIcs, pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  3. Bera, S.K., Gupta, S., Kumar, A., Roy, S.: Approximation algorithms for the partition vertex cover problem. Theoret. Comput. Sci. 555, 2–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: Partial vertex cover and budgeted maximum coverage in bipartite graphs. SIAM J. Discret. Math. 31(3), 2172–2184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, J., Manoussakis, Y., Phong, H., Tuza, Z.: Tropical matchings in vertex-colored graphs. Electron. Notes Discrete Math. 62, 219–224 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 68–81. SIAM (2012)

    Google Scholar 

  7. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. Journal of the ACM (JACM) 61(4), 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman, New York (1979)

    MATH  Google Scholar 

  9. Gaur, D.R., Bhattacharya, B.: Covering points by axis parallel lines. In: Proceedings 23rd European Workshop on Computational Geometry, pp. 42–45 (2007)

    Google Scholar 

  10. Har-Peled, S., Jones, M.: On separating points by lines. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 918–932. SIAM (2018)

    Google Scholar 

  11. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Inamdar, T., Varadarajan, K.R.: On the partition set cover problem. CoRR abs/1809.06506 (2018)

    Google Scholar 

  13. Jia, X., Sheth, K., Svensson, O.: Fair colorful k-center clustering. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 209–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_17

    Chapter  Google Scholar 

  14. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight. ACM Trans. Algorithms (TALG) 12(3), 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 624–635. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X_53

    Chapter  Google Scholar 

  16. Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geometry 33(4), 717–729 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization, vol. 46. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  18. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slavik, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tanmay Inamdar and Kasturi Varadarajan for helpful discussions. The authors are also thankful to the anonymous reviewers. The research of the first author is partly funded by the European Research Council (ERC) via grant LOPPRE, reference 819416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Bandyapadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bandyapadhyay, S., Banik, A., Bhore, S. (2021). On Fair Covering and Hitting Problems. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics