Skip to main content

Feedback Vertex Set on Hamiltonian Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

We study the computational complexity of Feedback Vertex Set on subclasses of Hamiltonian graphs. In particular, we consider Hamiltonian graphs that are regular or are planar and regular. Moreover, we study the less known class of p-Hamiltonian-ordered graphs, which are graphs that admit for any p-tuple of vertices a Hamiltonian cycle visiting them in the order given by the tuple. We prove that Feedback Vertex Set remains \({\text {NP}}\)-hard in these restricted cases, even if a Hamiltonian cycle is additionally given as part of the input.

T. Fluschnik—Supported by DFG, project TORE (NI 369/18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishnan, R., Ranganathan, K.: A Textbook of Graph Theory. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4529-6

    Book  MATH  Google Scholar 

  2. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Process. Lett. 54(4), 241–246 (1995). https://doi.org/10.1016/0020-0190(95)00020-D

    Article  MathSciNet  MATH  Google Scholar 

  3. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math. 30(3), 289–293 (1980). https://doi.org/10.1016/0012-365X(80)90236-8. https://www.sciencedirect.com/science/article/pii/0012365X80902368

  4. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-662-53622-3

    Book  Google Scholar 

  5. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 209–258. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3023-4_4

    Chapter  Google Scholar 

  6. Fleischner, H., Sabidussi, G.: 3-colorability of 4-regular Hamiltonian graphs. J. Graph Theory 42(2), 125–140 (2003). https://doi.org/10.1002/jgt.10079

    Article  MathSciNet  MATH  Google Scholar 

  7. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3- and 4-regular Hamiltonian graphs. Discrete Math. 310(20), 2742–2749 (2010). https://doi.org/10.1016/j.disc.2010.05.028

    Article  MathSciNet  MATH  Google Scholar 

  8. Fluschnik, T., Niedermeier, R., Rohm, V., Zschoche, P.: Multistage vertex cover. In: Proceedings of 14th IPEC. LIPIcs, vol. 148, pp. 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.IPEC.2019.14

  9. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  10. Li, D., Liu, Y.: A polynomial algorithm for finding the minimum feedback vertex set of a 3-regular simple graph 1. Acta Mathematica Scientia 19(4), 375–381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mulder, H.M.: Julius Petersen’s theory of regular graphs. Discrete Math. 100(1–3), 157–175 (1992). https://doi.org/10.1016/0012-365X(92)90639-W

    Article  MathSciNet  MATH  Google Scholar 

  12. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discrete Math. 340(6), 1210–1226 (2017). https://doi.org/10.1016/j.disc.2017.01.006

    Article  MathSciNet  MATH  Google Scholar 

  13. Ng, L., Schultz, M.: \(k\)-ordered Hamiltonian graphs. J. Graph Theory 24(1), 45–57 (1997). https://doi.org/10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J

  14. Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Ph.D. thesis, Paderborn (1983)

    Google Scholar 

  15. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in cubic graphs. J. Graph Theory 12(3), 405–412 (1988). https://doi.org/10.1002/jgt.3190120311

    Article  MathSciNet  MATH  Google Scholar 

  16. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math. 72(1–3), 355–360 (1988). https://doi.org/10.1016/0012-365X(88)90226-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Fluschnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavallaro, D., Fluschnik, T. (2021). Feedback Vertex Set on Hamiltonian Graphs. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics