Skip to main content

Designing Cyber-Physical Production Systems for Industrial Set-Up: A Practice-Centred Approach

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Industrial set-up has long been a focus of scientific research, largely because it entails substantial cost overhead for manufacturing companies. Whilst various efforts have been made to optimise this process, mainly in terms of time and other resources needed to accomplish it, to date little can be found in the HCI literature about how digital technologies can support workers who engage in it. This article sets out to addresses this gap in the literature by introducing a design case study carried out for the conception of a CPPS (Cyber-physical Production System) to support machine operators with industrial set-up. Our contribution is therefore threefold: first, we describe and discuss the results of an in-depth ethnographic study, carried out under the premises of the grounded design research paradigm, to uncover practices of machine operators to inform design. Second, we introduce a series of design implications drawn from those results. Finally, we demonstrate how those design implications have informed the participatory design activities pursued for the conception of the CPPS in question. In so doing, we advance the state of the art on the design of digital technologies to support people working with industrial set-up and open new research directions on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palanisamy, S., Siddiqui, S.: Changeover time reduction and productivity improvement by integrating conventional SMED method with implementation of MES for better production planning and control. Int. J. Innov. Res. Sci. Eng. Technol. (An ISO Certif. Organ.) 3297, 7961–7974 (2007)

    Google Scholar 

  2. Van Goubergen, D., Van Landeghem, H.: Rules for integrating fast changeover capabilities into new equipment design. In: Robotics and Computer-Integrated Manufacturing, pp. 205–214 (2002). https://doi.org/10.1016/S0736-5845(02)00011-X

  3. de Carvalho, A.F.P., et al.: Of embodied action and sensors: knowledge and expertise sharing in industrial set-up. Comput. Supp. Cooperat. Work (CSCW) 27(3–6), 875–916 (2018). https://doi.org/10.1007/s10606-018-9320-6

    Article  Google Scholar 

  4. Hoffmann, S., de Carvalho, A.F.P., Abele, D., Schweitzer, M., Tolmie, P., Wulf, V.: Cyber-physical systems for knowledge and expertise sharing in manufacturing contexts: towards a model enabling design. Comput. Support. Cooperat. Work (CSCW) 28(3–4), 469–509 (2019). https://doi.org/10.1007/s10606-019-09355-y

    Article  Google Scholar 

  5. Vicente, K.J.: HCI in the global knowledge-based economy: designing to support worker adaptation. ACM Trans. Comput. Interact. 7, 263–280 (2000). https://doi.org/10.1145/353485.353489

    Article  Google Scholar 

  6. Shingo, S.: A Revolution in Manufacturing: The SMED System. CRC Press (1985)

    Google Scholar 

  7. Ackerman, M.S., Dachtera, J., Pipek, V., Wulf, V.: Sharing knowledge and expertise: the CSCW view of knowledge management. Comput. Support. Cooperat. Work (CSCW) 22(4–6), 531–573 (2013). https://doi.org/10.1007/s10606-013-9192-8

    Article  Google Scholar 

  8. Argote, L., Ingram, P., Levine, J.M., Moreland, R.L.: Knowledge transfer in organizations: learning from the experience of others. Organ. Behav. Hum. Decis. Process. 82, 1–8 (2000). https://doi.org/10.1006/obhd.2000.2883

    Article  Google Scholar 

  9. Rohde, M., Brödner, P., Stevens, G., Betz, M., Wulf, V.: Grounded design – a praxeological IS research perspective. J. Inf. Technol. 32, 163–179 (2017). https://doi.org/10.1057/jit.2016.5

    Article  Google Scholar 

  10. Wulf, V., Müller, C., Pipek, V., Randall, D., Rohde, M., Stevens, G.: Practice-Based Computing: Empirically Grounded Conceptualizations Derived from Design Case Studies. In: Wulf, V., Schmidt, K., Randall, D. (eds.) Designing Socially Embedded Technologies in the Real-World. CSCW, pp. 111–150. Springer, London (2015). https://doi.org/10.1007/978-1-4471-6720-4_7

    Chapter  Google Scholar 

  11. Wulf, V., Pipek, V., Randall, D., Rohde, M., Schmidt, K., Stevens, G.: Socio-Informatics: A Practice-based Perspective on the Design and Use of IT Artifacts. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  12. Harper, R., Rodden, T., Rogers, Y., Sellen, A.: Being Human: Human-Computer Interaction in the year 2020. Microsoft Research Ltda, England (2008)

    Google Scholar 

  13. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer Interaction. John Wiley & Sons, West Sussex (2006)

    Google Scholar 

  14. Benyon, D.: Designing Interactive Systems: A Comprehensive Guide to HCI and Interaction Design. Addison Wesley (2010)

    Google Scholar 

  15. Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. In: Procedia CIRP, pp. 9–13. Elsevier B.V. (2014). https://doi.org/10.1016/j.procir.2014.03.115

  16. Marcus, A.: Design, user experience, and usability: design discourse. In: Marcus, A. (ed.) 4th International Conference, Design, user experience, and usability: Design discourse DUXU 2015 Held as Part of HCI International 2015 Los Angeles, CA, USA, August 2-7, 2015 proceedings, Part I. LNCS, pp. 75–85. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-20886-2

  17. Baheti, R., Gill, H.: Cyber-Physical Systems: From Theory to Practice (2011). https://doi.org/10.1145/1795194.1795205

    Article  Google Scholar 

  18. Rajkumar, R.: A Cyber Physical Future. Proc. IEEE. 100, 1309–1312 (2012). https://doi.org/10.1109/JPROC.2012.2189915

    Article  Google Scholar 

  19. Schuh, G., Gartzen, T., Rodenhauser, T., Marks, A.: Promoting work-based learning through industry 4.0. Procedia CIRP. 32, 82–87 (2015). https://doi.org/10.1016/j.procir.2015.02.213

  20. Lee, J., Bagheri, B., Kao, H.-A.: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  21. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE Int. Symp. Object Oriented Real-Time Distrib. Comput. 10 (2008). https://doi.org/10.1109/ISORC.2008.25

  22. Paelke, V., Röcker, C.: User interfaces for cyber-physical systems: challenges and possible approaches. In: Marcus, Aaron (ed.) DUXU 2015. LNCS, vol. 9186, pp. 75–85. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20886-2_8

  23. Schuh, G., Potente, T., Wesch-Potente, C., Weber, A.R., Prote, J.-P.: Collaboration mechanisms to increase productivity in the context of industrie 4.0. Procedia CIRP 19, 51–56 (2014). https://doi.org/10.1016/j.procir.2014.05.016

    Article  Google Scholar 

  24. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Rep. Ind. 4.0 WG. 82 (2013). https://doi.org/10.13140/RG.2.1.1205.8966

  25. Post, T., Ilsen, R., Hamann, B., Hagen, H., Aurich, J.C.: User-guided visual analysis of cyber-physical production systems. J. Comput. Inf. Sci. Eng. 17 (2017). https://doi.org/10.1115/1.4034872

  26. Grant, R.M.: Toward a knowledge-based theory of the firm. Strateg. Manag. J. 17, 109–122 (1996). https://doi.org/10.1002/smj.4250171110

    Article  Google Scholar 

  27. Grant, R.M., Baden-Fuller, C.: A knowledge accessing theory of strategic alliances. J. Manag. Stud. 41, 61–84 (2004). https://doi.org/10.1111/j.1467-6486.2004.00421.x

    Article  Google Scholar 

  28. Levin, D.Z.: Organizational learning and the transfer of knowledge: an investigation of quality improvement. Organ. Sci. 11, 630–647 (2000). https://doi.org/10.1287/orsc.11.6.630.12535

    Article  Google Scholar 

  29. Spender, J.-C.: Making knowledge the basis of a dynamic theory of the firm. Strateg. Manag. J. 17, 45–62 (1996). https://doi.org/10.1002/smj.4250171106

    Article  Google Scholar 

  30. Watson, S., Hewett, K.: A multi-theoretical model of knowledge transfer in organizations: determinants of knowledge contribution and knowledge reuse. J. Manag. Stud. 43, 141–173 (2006). https://doi.org/10.1111/j.1467-6486.2006.00586.x

    Article  Google Scholar 

  31. Randall, D., O’Brien, J., Rouncefield, M., Hughes, J.A.: Organisational memory and CSCW: supporting the “Mavis Phenomenon.” In: Proceedings Sixth Australian Conference on Computer-Human Interaction, pp. 26–33. IEEE Computer. Soc. Press (1996). https://doi.org/10.1109/OZCHI.1996.559984

  32. Burkhard, R.A., Meier, M.: Tube map visualization: evaluation of a novel knowledge visualization application for the transfer of knowledge in long-term projects. J. Ucs. 11, 473–494 (2005). citeulike-article-id:4469994

    Google Scholar 

  33. Patterson, R.E., et al.: A human cognition framework for information visualization. Comput. Graph. 42, 42–58 (2014). https://doi.org/10.1016/j.cag.2014.03.002

    Article  Google Scholar 

  34. Keller, T., Tergan, S.-O.: Visualizing Knowledge and Information: An Introduction. In: Tergan, S.-O., Keller, T. (eds.) Knowledge and Information Visualization. LNCS, vol. 3426, pp. 1–23. Springer, Heidelberg (2005). https://doi.org/10.1007/11510154_1

    Chapter  Google Scholar 

  35. Mengis, J., Eppler, M.J.: Visualizing instead of overloading: exploring the promise and problems of visual communication to reduce information overload. In: Information Overload, pp. 203–229. John Wiley & Sons, Inc., Hoboken, NJ, USA (2012). https://doi.org/10.1002/9781118360491.ch10

  36. Schmidt, K.: The trouble with “tacit knowledge.” Comput. Support. Coop. Work. 21, 163–225 (2012). https://doi.org/10.1007/s10606-012-9160-8

    Article  Google Scholar 

  37. Clarke, K., et al.: Dependable red hot action. In: Proceedings of the 2003 European CSCW Conference (ECSCW ’03). pp. 14–18 (2003)

    Google Scholar 

  38. Guba, E.G.: Criteria for assessing the trustworthiness of naturalistic inquiries. ECTJ. 29, 75–91 (1981)

    Article  Google Scholar 

  39. Bryman, A.: Social Research Methods. Oxford University Press, New York (2008)

    Google Scholar 

  40. Muller, M.J., Kuhn, S.: Participatory design. Commun. ACM. 36, 24–28 (1993). https://doi.org/10.1145/153571.255960

    Article  Google Scholar 

  41. Nielsen, J., Molich, R.: Heuristic Evaluation of User Interfaces (1990). https://doi.org/10.1145/97243.97281

  42. Braun, V., Clarke, V.: Thematic analysis. APA Handb. Res. methods Psychol. Vol 2 Res. Des. Quant. Qual. Neuropsychol. Biol. 2, 57–71 (2012). https://doi.org/10.1037/13620-004

  43. Poltrock, S., Grudin, J.: CSCW, Groupware and Workflow: Experiences, State of Art, and Future Trends. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Human-Computer Interaction INTERACT ’97. ITIFIP, pp. 661–662. Springer, Boston, MA (1997). https://doi.org/10.1007/978-0-387-35175-9_121

    Chapter  Google Scholar 

  44. MacKelprang, A.W., Nair, A.: Relationship between just-in-time manufacturing practices and performance: a meta-analytic investigation. J. Oper. Manag. 28, 283–302 (2010). https://doi.org/10.1016/j.jom.2009.10.002

    Article  Google Scholar 

  45. Van Goubergen, D., Lockhart, T.E.: Human Factors Aspects in Set-Up Time Reduction. In: Zülch, G., Jagdev, H.S., Stock, P. (eds.) Integrating Human Aspects in Production Management. IICIP, vol. 160, pp. 127–135. Springer, Boston, MA (2005). https://doi.org/10.1007/0-387-23078-5_10

    Chapter  Google Scholar 

  46. Nonaka, I., Toyama, R., Konno, N.: SECI, Ba and leadership: a unified model of dynamic knowledge creation. Long Range Plann. 33, 5–34 (2000). https://doi.org/10.1016/S0024-6301(99)00115-6

    Article  Google Scholar 

  47. Ackerman, M.S.: Augmenting organizational memory: a field study of answer garden. ACM Trans. Inf. Syst. 16, 203–224 (1998). https://doi.org/10.1145/290159.290160

    Article  Google Scholar 

  48. Nonaka, I.: The Knowledge-Creating Company. Harvard Business Review Classics, Brighton, MA, USA, MA, USA (1991)

    Google Scholar 

  49. Carroll, J.M.: Five reasons for scenario-based design. Interact. Comput. 13, 43–60 (2000). doi:10.1016/S0953-5438(00)00023-0

    Google Scholar 

  50. Finkenzeller, K., Waddington, R.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley (2003). doi:10.1002/9780470665121

    Google Scholar 

  51. Altintas, Y., Brecher, C., Weck, M., Witt, S.: Virtual machine tool. CIRP Ann. 54, 115–138 (2005). https://doi.org/10.1016/S0007-8506(07)60022-5

    Article  Google Scholar 

  52. Jönsson, A., Wall, J., Broman, G.: A virtual machine concept for real-time simulation of machine tool dynamics. Int. J. Mach. Tools Manuf. 45, 795–801 (2005). https://doi.org/10.1016/J.IJMACHTOOLS.2004.11.012

    Article  Google Scholar 

  53. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4, 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  54. Tantik, E., Anderl, R.: Industrie 4.0: Using cyber-physical systems for value-stream based production evaluation. Procedia CIRP. 57, 207–212 (2016). https://doi.org/10.1016/j.procir.2016.11.036

  55. Caudell, T.P., Mizell, D.W.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, vol. 2, pp. 659–669. IEEE (1992). https://doi.org/10.1109/HICSS.1992.183317

  56. Goh, S.C.: Managing effective knowledge transfer: an integrative framework and some practice implications. J. Knowl. Manag. 6, 18–35 (2001)

    Google Scholar 

  57. Roberts, J.: From know-how to show-how? Questioning the role of information and communication technologies in knowledge transfer. Technol. Anal. Strateg. Manag. 12, 429–443 (2000). https://doi.org/10.1080/713698499

    Article  Google Scholar 

  58. Fillatreau, P., Fourquet, J.Y., Le Bolloc’H, R., Cailhol, S., Datas, A., Puel, B.: Using virtual reality and 3D industrial numerical models for immersive interactive checklists. Comput. Ind. 64, 1253–1262 (2013). https://doi.org/10.1016/j.compind.2013.03.018

  59. Janlert, L.-E., Stolterman, E.: Complex interaction. ACM Trans. Comput. Interact. 17, 1–32 (2010). https://doi.org/10.1145/1746259.1746262

    Article  Google Scholar 

  60. Lee, J., Bagheri, B., Kao, H.: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In: Int. Proceeding Int Conf. Ind. Informatics. (2014). https://doi.org/10.13140/2.1.1464.1920

  61. Bardram, J., Bossen, C.: Mobility work: The spatial dimension of collaboration at a hospital. Comput. Support. Coop. Work CSCW An Int. J. 14, 131–160 (2005). https://doi.org/10.1007/s10606-005-0989-y

  62. Strauss, A., Fargerhaugh, S., Suczek, B., Wiener, C.: Social Organisation of Medical Work. University of Chicago Press, Chicago & London (1985)

    Google Scholar 

Download references

Acknowledgements

The findings presented in the article have been generated as part of the Cyberrüsten 4.0 project funded by the European Union and EFRE.NRW through the grant EFRE-0800263. We are thankful for the financial support. We are also thankful to Professor M. Diaz Perez for her valuable comments and improvement suggestions on previous versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparecido Fabiano Pinatti de Carvalho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 132810 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Carvalho, A.F.P., Hoffmann, S., Abele, D., Schweitzer, M., Wulf, V. (2021). Designing Cyber-Physical Production Systems for Industrial Set-Up: A Practice-Centred Approach. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12932. Springer, Cham. https://doi.org/10.1007/978-3-030-85623-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85623-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85622-9

  • Online ISBN: 978-3-030-85623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics