Skip to main content

Exploring the Visual Space to Improve Depth Perception in Robot Teleoperation Using Augmented Reality: The Role of Distance and Target’s Pose in Time, Success, and Certainty

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12932))

Included in the following conference series:

Abstract

Accurate depth perception in co-located teleoperation has the potential to improve task performance in manipulation and grasping tasks. We thus explore the operator’s visual space and design visual cues using augmented reality. Our goal is to facilitate the positioning of the gripper above a target object before attempting to grasp it. The designs we propose include a virtual circle (Circle), virtual extensions (Extensions) from the gripper’s fingers, and a color matching design using a real colormap with matching colored virtual circles (Colors). We conducted an experiment to evaluate these designs and the influence of distance from the operator to the workspace and the target object’s pose. We report on time, success, and perceived certainty in a grasping task. Our results show that a shorter distance leads to higher success, faster grasping time, and higher certainty. Concerning the target object’s pose, a clear pose leads to higher success and certainty but interestingly slower task times. Regarding the design of cues, our results reveal that the simplicity of the Circle cue leads to the highest success and outperforms the most complex cue Colors also for task time, while the level of certainty seems to be depending more on the distance than the type of cue. We consider that our results can serve as an initial analysis to further explore these factors both when designing to improve depth perception and within the context of co-located teleoperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arévalo Arboleda, S., Dierks, T., Rücker, F., Gerken, J.: There’s more than meets the eye. In: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, pp. 104–106. ACM, [S.l.] (2020). https://doi.org/10.1145/3371382.3378240

  2. Audley, R.J.: A stochastic model for individual choice behavior. Psychol. Rev. 67, 1 (1960). https://doi.org/10.1037/h0046438

  3. Baranski, J.V., Petrusic, W.M.: Probing the locus of confidence judgments: experiments on the time to determine confidence. J. Exp. Psychol. Hum. Percept. Perform. 24(3), 929–945 (1998). https://doi.org/10.1037//0096-1523.24.3.929

    Article  Google Scholar 

  4. Barden, J., Petty, R.E.: The mere perception of elaboration creates attitude certainty: exploring the thoughtfulness heuristic. J. Pers. Soc. Psychol. 95(3), 489–509 (2008). https://doi.org/10.1037/a0012559

    Article  Google Scholar 

  5. Barthelmé, S., Mamassian, P.: Evaluation of objective uncertainty in the visual system. PLoS Comput. Biol. 5(9), e1000504 (2009). https://doi.org/10.1371/journal.pcbi.1000504

  6. Blanca, M.J., Alarcón, R., Arnau, J., Bono, R., Bendayan, R.: Non-normal data: is ANOVA still a valid option? Psicothema 29(4), 552–557 (2017). https://doi.org/10.7334/psicothema2016.383

    Article  Google Scholar 

  7. Bodenheimer, B., et al.: Distance estimation in virtual and real environments using bisection. In: Proceedings, APGV 2007, p. 35. ACM (2007). https://doi.org/10.1145/1272582.1272589

  8. Boldt, A., Yeung, N.: Shared neural markers of decision confidence and error detection. J. Neurosci. 35(8), 3478–3484 (2015). https://doi.org/10.1523/JNEUROSCI.0797-14.2015

    Article  Google Scholar 

  9. Brenner, E., Smeets, J.B.J.: Depth perception. In: Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, pp. 1–30. John Wiley & Sons, Inc (2018). https://doi.org/10.1002/9781119170174.epcn209

  10. Choi, H., Cho, B., Masamune, K., Hashizume, M., Hong, J.: An effective visualization technique for depth perception in augmented reality-based surgical navigation. Int. J. Med. Robot. Comput. Assist. Surg. 12(1), 62–72 (2016). https://doi.org/10.1002/rcs.1657

    Article  Google Scholar 

  11. Cipiloglu, Z., Bulbul, A., Capin, T.: A framework for enhancing depth perception in computer graphics. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, p. 141. ACM (2010). https://doi.org/10.1145/1836248.1836276

  12. Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances. In: Perception of Space and Motion, pp. 69–117. Elsevier (1995). https://doi.org/10.1016/B978-012240530-3/50005-5

  13. Diaz, C., Walker, M., Szafir, D.A., Szafir, D.: Designing for depth perceptions in augmented reality. In: 2017 IEEE International Symposium on Mixed and Augmented Reality, pp. 111–122. IEEE (2017). https://doi.org/10.1109/ISMAR.2017.28

  14. El Jamiy, F., Marsh, R.: Survey on depth perception in head mounted displays: distance estimation in virtual reality, augmented reality, and mixed reality. IET Image Process. 13(5), 707–712 (2019). https://doi.org/10.1049/iet-ipr.2018.5920

    Article  Google Scholar 

  15. Ellis, S.R., Menges, B.M.: Localization of virtual objects in the near visual field. Hum. Factors J. Hum. Factors Ergon. Soc. 40(3), 415–431 (1998). https://doi.org/10.1518/001872098779591278

    Article  Google Scholar 

  16. de Gardelle, V., Mamassian, P.: Does confidence use a common currency across two visual tasks? Psychol. Sci. 25(6), 1286–1288 (2014). https://doi.org/10.1177/0956797614528956

    Article  Google Scholar 

  17. Gherman, S., Philiastides, M.G.: Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage 106, 134–143 (2015). https://doi.org/10.1016/j.neuroimage.2014.11.036

    Article  Google Scholar 

  18. Gong, L.L., Ong, S.K., Nee, A.Y.C.: Projection-based augmented reality interface for robot grasping tasks. In: Proceedings of the 2019 4th International Conference on Robotics, Control and Automation - ICRCA 2019, pp. 100–104. ACM Press (2019). https://doi.org/10.1145/3351180.3351204

  19. Hedayati, H., Walker, M., Szafir, D.: Improving collocated robot teleoperation with augmented reality. In: HRI 2018, pp. 78–86. ACM (2018). https://doi.org/10.1145/3171221.3171251

  20. Heereman, J., Walter, H., Heekeren, H.R.: A task-independent neural representation of subjective certainty in visual perception. Front. Hum. Neurosci. 9, 551 (2015). https://doi.org/10.3389/fnhum.2015.00551

    Article  Google Scholar 

  21. Heinrich, F., Bornemann, K., Lawonn, K., Hansen, C.: Depth perception in projective augmented reality: an evaluation of advanced visualization techniques. In: 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1–11. ACM (2019). https://doi.org/10.1145/3359996.3364245

  22. Hershenson, M.: Size-distance invariance: kinetic invariance is different from static invariance. Percept. Psychophysics 51(6), 541–548 (1992). https://doi.org/10.3758/BF03211651

    Article  Google Scholar 

  23. Hibbard, P.B., Haines, A.E., Hornsey, R.L.: Magnitude, precision, and realism of depth perception in stereoscopic vision. Cogn. Res. Principles Implications 2(1), 25 (2017). https://doi.org/10.1186/s41235-017-0062-7

    Article  Google Scholar 

  24. Howard, I.P.: Depth perception. In: Stevens’ Handbook of Experimental Psychology, pp. 77–120 (2002)

    Google Scholar 

  25. Howard, I.P., Rogers, B.J.: Perceiving in Depth, vol. 29. Oxford University Press (2012)

    Google Scholar 

  26. Jones, A., Swan, J.E., Singh, G., Kolstad, E.: The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. In: IEEE Virtual Reality 2008, pp. 267–268. IEEE (2008). https://doi.org/10.1109/VR.2008.4480794

  27. Kiani, R., Corthell, L., Shadlen, M.N.: Choice certainty is informed by both evidence and decision time. Neuron 84(6), 1329–1342 (2014). https://doi.org/10.1016/j.neuron.2014.12.015

    Article  Google Scholar 

  28. Kim, H.Y.: Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dent. Endodontics 38(1), 52–54 (2013). https://doi.org/10.5395/rde.2013.38.1.52

    Article  Google Scholar 

  29. Kruijff, E., Swan, J.E., Feiner, S.: Perceptual issues in augmented reality revisited. In: 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2010, pp. 3–12 (2010). https://doi.org/10.1109/ISMAR.2010.5643530

  30. Krupke, D., Steinicke, F., Lubos, P., Jonetzko, Y., Gorner, M., Zhang, J.: Comparison of multimodal heading and pointing gestures for co-located mixed reality human-robot interaction. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018). https://doi.org/10.1109/IROS.2018.8594043

  31. Laramee, R.: Ware colin: rivalry and interference with a head-mounted display. ACM Trans. Comput.-Hum. Interact. 9(3), 238–251 (2002). https://doi.org/10.1145/568513.568516

    Article  Google Scholar 

  32. Lee, J.H., Herzog, T.A., Meade, C.D., Webb, M.S., Brandon, T.H.: The use of gee for analyzing longitudinal binomial data: a primer using data from a tobacco intervention. Addict. Behav. 32(1), 187–193 (2007). https://doi.org/10.1016/j.addbeh.2006.03.030

    Article  Google Scholar 

  33. Livingston, M.A., Zanbaka, C., Swan, J.E., Smallman, H.S.: Objective measures for the effectiveness of augmented reality. In: Virtual Reality 2005, pp. 287–288. IEEE (2005). https://doi.org/10.1109/VR.2005.1492798

  34. Loomis, J., Knapp, J.: Visual perception of egocentric distance in real and virtual environments. In: Virtual and Adaptive Environments, pp. 21–46. Lawrence Erlbaum (2003). https://doi.org/10.1201/9781410608888.pt1

  35. Mamassian, P.: Visual confidence. Annu. Rev. Vis. Sci. 2, 459–481 (2016). https://doi.org/10.1146/annurev-vision-111815-114630

    Article  Google Scholar 

  36. Microsoft: Microsoft hololens. https://www.microsoft.com/en-us/hololens

  37. Microsoft: Microsoft hololens calibration. https://docs.microsoft.com/en-us/hololens/hololens-calibration

  38. Microsoft: Mixed reality toolkit (2017). https://github.com/microsoft/MixedRealityToolkit-Unity/releases

  39. Mosiello, G., Kiselev, A., Loutfi, A.: Using augmented reality to improve usability of the user interface for driving a telepresence robot. Paladyn, J. Behav. Robot. 4(3), 174–181 (2013). https://doi.org/10.2478/pjbr-2013-0018

  40. Paris, R., Joshi, M., He, Q., Narasimham, G., McNamara, T.P., Bodenheimer, B.: Acquisition of survey knowledge using walking in place and resetting methods in immersive virtual environments. In: Proceedings of the ACM Symposium on Applied Perception, pp. 1–8. ACM (2017). https://doi.org/10.1145/3119881.3119889

  41. Park, J., Ha, S.: Visual information presentation in continuous control systems using visual enhancements. In: Contact-free Stress Monitoring for User’s Divided Attention. INTECH Open Access Publisher (2008). https://doi.org/10.5772/6307

  42. Petrocelli, J.V., Tormala, Z.L., Rucker, D.D.: Unpacking attitude certainty: attitude clarity and attitude correctness. J. Pers. Soc. Psychol. 92(1), 30–41 (2007). https://doi.org/10.1037/0022-3514.92.1.30

    Article  Google Scholar 

  43. Ping, J., Weng, D., Liu, Y., Wang, Y.: Depth perception in shuffleboard: depth cues effect on depth perception in virtual and augmented reality system. J. Soc. Inf. Disp. 28(2), 164–176 (2020). https://doi.org/10.1002/jsid.840

    Article  Google Scholar 

  44. Pleskac, T.J., Busemeyer, J.R.: Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117(3), 864–901 (2010). https://doi.org/10.1037/a0019737

    Article  Google Scholar 

  45. PTC: Vuforia engine in unity. https://library.vuforia.com/articles/Training/getting-started-with-vuforia-in-unity.html

  46. Rolland, J.P., Meyer, C., Arthur, K., Rinalducci, E.: Method of adjustments versus method of constant stimuli in the quantification of accuracy and precision of rendered depth in head-mounted displays. Presence Teleoperators Virtual Environ. 11(6), 610–625 (2002). https://doi.org/10.1162/105474602321050730

    Article  Google Scholar 

  47. Rosales, C.S., et al.: Distance judgments to on- and off-ground objects in augmented reality. In: Proceedings, 26th IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 237–243. IEEE (2019). https://doi.org/10.1109/VR.2019.8798095

  48. Stadler, S., Kain, K., Giuliani, M., Mirnig, N., Stollnberger, G., Tscheligi, M.: Augmented reality for industrial robot programmers: workload analysis for task-based, augmented reality-supported robot control. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 179–184 (2016). https://doi.org/10.1109/ROMAN.2016.7745108

  49. Shimojo, S., Paradiso, M., Fujita, I.: What visual perception tells us about mind and brain. Proc. Nat. Acad. Sci. U.S.A. 98(22), 12340–12341 (2001). https://doi.org/10.1073/pnas.221383698

    Article  Google Scholar 

  50. Tormala, Z.L.: The role of certainty (and uncertainty) in attitudes and persuasion. Curr. Opin. Psychol. 10, 6–11 (2016). https://doi.org/10.1016/j.copsyc.2015.10.017

    Article  Google Scholar 

  51. Vassallo, R., Rankin, A., Chen, E.C.S., Peters, T.M.: Hologram stability evaluation for Microsoft hololens. In: Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, p. 1013614. SPIE Proceedings, SPIE (2017). https://doi.org/10.1117/12.2255831

  52. Walker, M., Hedayati, H., Lee, J., Szafir, D.: Communicating robot motion intent with augmented reality. In: Kanda, T., \(\hat{\rm S}\)abanović, S., Hoffman, G., Tapus, A. (eds.) HRI 2018, pp. 316–324. ACM (2018). https://doi.org/10.1145/3171221.3171253

  53. Walker, M.E., Hedayati, H., Szafir, D.: Robot teleoperation with augmented reality virtual surrogates. In: HRI 2019, pp. 202–210. IEEE (2019). https://doi.org/10.1109/HRI.2019.8673306

  54. Williams, T., Hirshfield, L., Tran, N., Grant, T., Woodward, N.: Using augmented reality to better study human-robot interaction. In: Chen, J.Y.C., Fragomeni, G. (eds.) HCII 2020. LNCS, vol. 12190, pp. 643–654. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49695-1_43

    Chapter  Google Scholar 

  55. Willis, J., Todorov, A.: First impressions: making up your mind after a 100-ms exposure to a face. Psychol. Sci. 17(7), 592–598 (2006). https://doi.org/10.1111/j.1467-9280.2006.01750.x

    Article  Google Scholar 

  56. Wither, J., Hollerer, T.: Pictorial depth cues for outdoor augmented reality. In: ISWC 2005. IEEE (2005). https://doi.org/10.1109/ISWC.2005.41

  57. Xie, F., Paik, M.C.: Generalized estimating equation model for binary outcomes with missing covariates. Biometrics 53(4), 1458 (1997). https://doi.org/10.2307/2533511

    Article  MATH  Google Scholar 

  58. Yeung, N., Summerfield, C.: Metacognition in human decision-making: confidence and error monitoring. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367(1594), 1310–1321 (2012). https://doi.org/10.1098/rstb.2011.0416

    Article  Google Scholar 

  59. Yonas, A., Granrud, C.E.: Infants’ perception of depth from cast shadows. Percep. Psychophysics 68(1), 154–160 (2006). https://doi.org/10.3758/bf03193665

    Article  Google Scholar 

  60. Zollmann, S., Hoppe, C., Langlotz, T., Reitmayr, G.: Flyar: augmented reality supported micro aerial vehicle navigation. IEEE Trans. Vis. Comput. Graph. 20(4), 560–568 (2014). https://doi.org/10.1109/TVCG.2014.24

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the German Federal Ministry of Education and Research (BMBF, FKZ: 13FH011IX6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Arévalo Arboleda .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 18149 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arévalo Arboleda, S., Dierks, T., Rücker, F., Gerken, J. (2021). Exploring the Visual Space to Improve Depth Perception in Robot Teleoperation Using Augmented Reality: The Role of Distance and Target’s Pose in Time, Success, and Certainty. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12932. Springer, Cham. https://doi.org/10.1007/978-3-030-85623-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85623-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85622-9

  • Online ISBN: 978-3-030-85623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics