Skip to main content

Co-designing Tangible Break Reminders with People with Repetitive Strain Injury

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

People with Repetitive Strain Injury (RSI) performing computer work for 4+ hours/day should take microbreaks every hour to reduce their symptoms. Unlike apps and notifications, tangible user interfaces offer the opportunity to provide non-focus-demanding and calm break-reminders in users’ periphery. This paper explores this design space to identify the design parameters of break-reminders as everyday things. First, we discuss and analyze our initial co-designing study, where 11 participants with RSI created 9 low-fidelity prototypes. Then, we present our results-led high-fidelity prototypes and demonstrate the use of the findings in directing the design decisions of the technical implementation. Finally, we take our designs back to users in a second study to gain deeper insight on their reflection on physical break reminders. Results show how users designed for calmness and ubiquity in their everyday environment, playful user engagement and emotional shape-shifting among other design qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullaly, J., Grigg, L.: RSI: integrating the major theories. Aust. J. Psychol. 40, 19–33 (1988). https://doi.org/10.1080/00049538808259066

    Article  Google Scholar 

  2. Buckle, P.W., Jason Devereux, J.: The nature of work-related neck and upper limb musculoskeletal disorders. Appl. Ergon. 33(3), 207–271 (2002). https://doi.org/10.1016/S0003-6870(02)00014-5

    Article  Google Scholar 

  3. Peper, E., Gibney, K.H., Wilson, V.E.: Group training with healthy computing practices to prevent repetitive strain injury (RSI): a preliminary study. Appl. Psychophysiol. Biofeedback 29, 279–287 (2004). https://doi.org/10.1007/s10484-004-0388-z

    Article  Google Scholar 

  4. Bailey, B.P., Konstan, J.A.: On the need for attention-aware systems: measuring effects of interruption on task performance, error rate, and affective state. Comput. Hum. Behav. 22, 685–708 (2006). https://doi.org/10.1016/j.chb.2005.12.009

    Article  Google Scholar 

  5. Finsen, L., Søgaard, K., Christensen, H.: Influence of memory demand and contra lateral activity on muscle activity. J. Electromyogr. Kinesiol. 11, 373–380 (2001). https://doi.org/10.1016/S1050-6411(01)00015-3

    Article  Google Scholar 

  6. Leclerc, A., Landre, M.F., Chastang, J.F., Niedhammer, I., Roquelaure, Y.: Upper-limb disorders in repetitive work. Scand. J. Work. Environ. Heal. 27, 268–278 (2001). https://doi.org/10.5271/sjweh.614

    Article  Google Scholar 

  7. Christensen, H., Lundberg, U.: Musculoskeletal problems as a result of work organization, work tasks and stress during computer work. Work Stress. 16, 89–93 (2002). https://doi.org/10.1080/02678370213265

    Article  Google Scholar 

  8. Birch, L., Juul-Kristensen, B., Jensen, C., Finsen, L., Christensen, H.: Acute response to precision, time pressure and mental demand during simulated computer work. Scand. J. Work. Environ. Heal. 26, 299–305 (2000). https://doi.org/10.5271/sjweh.546

    Article  Google Scholar 

  9. Henning, R.A., Jacques, P., Kissel, G.V., Sullivan, A.B., Alteras-Webb, S.M.: Frequent short rest breaks from computer work: effects on productivity and well-being at two field sites. Ergonomics 40, 78–91 (1997). https://doi.org/10.1080/001401397188396

    Article  Google Scholar 

  10. Slijper, H.P., Richter, J.M., Smeets, J.B.J., Frens, M.A.: The effects of pause software on the temporal characteristics of computer use. Ergonomics 50, 178–191 (2007). https://doi.org/10.1080/00140130601049410

    Article  Google Scholar 

  11. Gomes, A., Nesbitt, A., Vertegaal, R.: MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – CHI 2013,. pp. 583–592. ACM Press, New York, New York, USA (2013). https://doi.org/10.1145/2470654.2470737

  12. Jafarinaimi, N., Forlizzi, J., Hurst, A., Zimmerman, J.: Breakaway: an ambient display designed to change human behavior. In: Berlin, L. (ed.) The Man Behind the Microchip, pp. 82–96. Oxford University Press (2007). https://doi.org/10.1093/acprof:oso/9780195163438.003.0005

  13. Jones, L., McClelland, J., Thongsouksanoumane, P., Girouard, A.: Ambient notifications with shape changing circuits in peripheral locations. In: Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ISS 2017 (2017). https://doi.org/10.1145/3132272.3132291

  14. Kucharski, P., et al.: APEOW: a personal persuasive avatar for encouraging breaks in office work. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1627–1630 (2016)

    Google Scholar 

  15. National Health Services: Repetitive strain injury (RSI). https://www.nhs.uk/conditions/repetitive-strain-injury-rsi/. Accessed 23 Jan 2021

  16. Kryger, A.I.: Does computer use pose an occupational hazard for forearm pain; from the NUDATA study. Occup. Environ. Med. 60, 14e–14 (2003). https://doi.org/10.1136/oem.60.11.e14

    Article  Google Scholar 

  17. Fogleman, M., Brogmus, G.: Computer mouse use and cumulative trauma disorders of the upper extremities. Ergonomics 38, 2465–2475 (1995). https://doi.org/10.1080/00140139508925280

    Article  Google Scholar 

  18. Nieuwenhuijsen, E.R.: Health behavior change among office workers: an exploratory study to prevent repetitive strain injuries. Work 23, 215–224 (2004)

    Google Scholar 

  19. Barredo, R.D.V., Mahon, K.: The effects of exercise and rest breaks on musculoskeletal discomfort during computer tasks: an evidence-based perspective. J. Phys. Ther. Sci. 19, 151–163 (2007). https://doi.org/10.1589/jpts.19.151

    Article  Google Scholar 

  20. Balci, R., Aghazadeh, F.: Effects of exercise breaks on performance, muscular load, and perceived discomfort in data entry and cognitive tasks. Comput. Ind. Eng. 46, 399–411 (2004). https://doi.org/10.1016/j.cie.2004.01.003

    Article  Google Scholar 

  21. McLean, L., Tingley, M., Scott, R.N., Rickards, J.: Computer terminal work and the benefit of microbreaks. Appl. Ergon. 32, 225–237 (2001). https://doi.org/10.1016/S0003-6870(00)00071-5

    Article  Google Scholar 

  22. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interruptions. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 175–182 (2004). https://doi.org/10.1145/985692.985715

  23. Iqbal, S.T., Horvitz, E.: Disruption and recovery of computing tasks: Field study, analysis, and directions. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 677–686 (2007). https://doi.org/10.1145/1240624.1240730

  24. Morris, D., Brush, J.B., Meyers, B.R.: SuperBreak: using interactivity to enhance ergonomic typing breaks. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 1817–1826 (2008). https://doi.org/10.1145/1357054.1357337

  25. Van Dantzig, S., Geleijnse, G., Van Halteren, A.T.: Toward a persuasive mobile application to reduce sedentary behavior. Pers. Ubiquitous Comput. 17, 1237–1246 (2013). https://doi.org/10.1007/s00779-012-0588-0

    Article  Google Scholar 

  26. Lee, K., Ju, S., Dzhoroev, T., Goh, G., Lee, M., Park, Y.: DayClo : an everyday table clock providing interaction with personal schedule data for self-reflection. In: Proceedings of DIS 2020, pp. 1793–1806. ACM (2020)

    Google Scholar 

  27. Roudaut, A., Karnik, A., Löchtefeld, M., Subramanian, S.: Morphees: toward high “shape resolution” in self-actuated flexible mobile devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – CHI 2013, p. 593. ACM Press, New York, USA (2013). https://doi.org/10.1145/2470654.2470738

  28. Kim, H., Coutrix, C., Roudaut, A.: Morphees+: studying everyday reconfigurable objects for the design and taxonomy of reconfigurable UIS. In: Conference on Human Factors in Computing Systems –- Proceedings (2018). https://doi.org/10.1145/3173574.3174193

  29. Alexander, J., et al.: Grand challenges in shape-changing interface research. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–14. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3173574.3173873

  30. Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.-B.: Radical atoms: beyond tangible bits, toward transformable materials. Interactions 19(1), 38–51 (2012). https://doi.org/10.1145/2065327.2065337

    Article  Google Scholar 

  31. Holman, D., Vertegaal, R.: Organic user interfaces: Designing computers in any way, shape, or form. Commun. ACM 51, 48–55 (2008). https://doi.org/10.1145/1349026.1349037

    Article  Google Scholar 

  32. Rasmussen, M.K., Pedersen, E.W., Petersen, M.G., Hornbæk, K.: Shape-changing interfaces: a review of the design space and open research questions. Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems. CHI 2012, pp. 735–744 (2012). https://doi.org/10.1145/2207676.2207781

  33. Probst, K., Yasu, K., Seifried, T., Sugimoto, M., Haller, M., Inami, M.: Move-it: interactive sticky notes actuated by shape memory alloys. In: Conference on Human Factors in Computing Systems –- Proceedings (2011). https://doi.org/10.1145/1979742.1979780

  34. Roy, M., Hemmert, F., Wettach, R.: Living interfaces: the intimate door lock. In: Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, TEI 2009, pp. 45–46 (2009). https://doi.org/10.1145/1517664.1517681

  35. Kobayashi, K.: Shape changing device for notification. In: Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 71–72 (2013)

    Google Scholar 

  36. Hemmert, F., Hamann, S., Löwe, M., Zeipelt, J., Joost, G.: Shape-changing mobiles. In: Proceedings of the 28th International Conference on Extended Abstracts on Human factors in computing systems (CHI EA 2010), p. 3075 (2010). https://doi.org/10.1145/1753846.1753920.

  37. Kim, S., Kim, H., Lee, B., Nam, T.-J., Lee, W.: Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In: Proceeding of the Twenty-sixth Annual {SIGCHI} Conference on Human Factors in Computing Systems, pp. 211–224 (2008). https://doi.org/10.1145/1357054.1357090

  38. Redström, J.: Designing everyday computational things. PhD Thesis. Gothenbg. Stud. Informatics. 244 (2001)

    Google Scholar 

  39. Grønbæk, J.E., Korsgaard, H., Petersen, M.G., Birk, M.H., Krogh, P.G.: Proxemic transitions: designing shape-changing furniture for informal meetings. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 7029–7041., Denver, CO, USA (2017). https://doi.org/10.1145/3025453.3025487

  40. Gaver, W., Bowers, J., Boucher, A., Law, A., Pennington, S., Villar, N.: The history tablecloth: illuminating domestic activity. In: Proceedings of the 2017 Conference on Designing Interactive Systems (DIS 2006), pp. 199–208. ACM (2006). https://doi.org/10.1145/1142405.1142437

  41. Mennicken, S., Brush, A.J.J.B., Roseway, A., Scott, J.: Finding roles for interactive furniture in homes with EmotoCouch. In: UbiComp 2014 – Adjunct Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 923–930. Seattle, WA, USA (2014). https://doi.org/10.1145/2638728.2641547

  42. Kinch, S., Groenvall, E., Graves Petersen, M., Kirkegaard Rasmussen, M.: Encounters on a shape-changing bench exploring atmospheres and social behaviour in situ. In: Proceedings of the 8th International Conference on Tangible, Embed. Embodied Interact, pp. 233–240 (2014). https://doi.org/10.1145/2540930.2540947

  43. Shin, J.G., et al.: Slow robots for unobtrusive posture correction. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 1–10 (2019). https://doi.org/10.1145/3290605.3300843

  44. Ueki, A., Kamata, M., Inakage, M.: Tabby: designing of coexisting entertainment content in everyday life by expanding the design of furniture. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology – ACE 2007,. pp. 72–78. ACM Press, Berlin, Germany (2007). https://doi.org/10.1145/1255047.1255062

  45. Nabil, S., et al.: ActuEating: designing, studying and exploring actuating decorative artefacts. In: Proceedings of DIS 2018, pp. 327–339. Hong Kong (2018). https://doi.org/10.1145/3196709.3196761

  46. Taylor, S., Robertson, S.: Digital Lace: a collision of responsive technologies. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers (ISWC2014 Adjunct), pp. 93–97. ACM, New York (2014). https://doi.org/10.1145/2641248.2641280

  47. Zhong, C., Wakkary, R., Zhang, X., Chen, A.Y.S.: TransTexture lamp: understanding lived experiences with deformation through a materiality lens. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 1–13 (2020). https://doi.org/10.1145/3313831.3376721

  48. Haller, M., et al.: Finding the right way for interrupting people to posture guidance. In: Proceedings of the 13th IFIP TC 13 International Conference on Human-computer Interaction, pp. 1–18 (2013)

    Google Scholar 

  49. QSR International: NVivo 12. https://www.qsrinternational.com/nvivo/nvivo-products/nvivo-12-windows (2019)

  50. Dimitriadis, P., Alexander, J.: Evaluating the effectiveness of physical shape-change for in-pocket mobile device notifications. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 2589–2592 (2014). https://doi.org/10.1145/2556288.2557164

  51. Everitt, A., Alexander, J.: PolySurface: A design approach for rapid prototyping of shape-changing displays using semi-solid surfaces. In: DIS 2017 – Proceedings of the 2017 ACM Conference on Designing Interactive Systems, pp. 1283–1294 (2017). https://doi.org/10.1145/3064663.3064677

  52. Braun, V., Clarke, V.: Thematic analysis. In: Cooper, H., Camic, P.M., Long, D.L., Panter, A.T., Rindskopf, D., Sher, K.J. (eds.) APA Handbook of Research Methods in Psychology, Vol 2: Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological., pp. 57–71. American Psychological Association, Washington (2012). https://doi.org/10.1037/13620-004

    Chapter  Google Scholar 

  53. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

    Article  Google Scholar 

  54. Preece, J., Sharp, H., Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction, 4th edn. Wiley, USA (2015)

    Google Scholar 

  55. Wallace, J., McCarthy, J., Wright, P.C., Olivier, P.: Making design probes work. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3441–3450. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2470654.2466473

  56. Pernice, K.: UX prototypes: low fidelity vs. high fidelity. https://www.nngroup.com/articles/ux-prototype-hi-lo-fidelity/. Accessed 21 Jan 2021

  57. Jacob, R.J.K., et al.: Reality-based interaction: a framework for post-WIMP interfaces. In: Proceeding of the Twenty-Sixth Annual CHI Conference on Human factors in Computing Systems – CHI 2008, p. 201. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1357054.1357089

  58. Spiel, K., et al.: Nothing about us without us: Investigating the role of critical disability studies in HCI. In: In: Conference on Human Factors in Computing Systems – Proceedings, pp. 1–8 (2020). https://doi.org/10.1145/3334480.3375150

  59. Mankoff, J., Hayes, G.R., Kasnitz, D.: Disability studies as a source of critical inquiry for the field of assistive technology. ASSETS 2010 – Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility, pp. 3–10 (2010). https://doi.org/10.1145/1878803.1878807

  60. Lee, B., Wu, S., Reyes, M., Saakes, D.: The effects of interruption timings on autonomous height-adjustable desks that respond to task changes. Conference on Human Factors in Computing Systems – Proceedings, pp. 1–10 (2019). https://doi.org/10.1145/3290605.3300558

  61. Al Maimani, A., Roudaut, A.: Frozen suit: designing a changeable stiffness suit and its application to haptic games. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 2440–2448 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the National Sciences and Engineering Research Council of Canada (NSERC) through Research and Education in Accessibility, Design, and Innovation (READi) CREATE Training Program (497303-2017), a Discovery Accelerator Supplement (2017-507935). It was also supported by the Royal Society – International Exchanges (ref. IES\R2\170109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Girouard .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 27674 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Nabil, S., Roudaut, A., Girouard, A. (2021). Co-designing Tangible Break Reminders with People with Repetitive Strain Injury. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12932. Springer, Cham. https://doi.org/10.1007/978-3-030-85623-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85623-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85622-9

  • Online ISBN: 978-3-030-85623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics