Skip to main content

Smart Vehicle Proxemics: A Conceptual Framework Operationalizing Proxemics in the Context of Outside-the-Vehicle Interactions

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12933))

Included in the following conference series:

Abstract

We introduce smart vehicle proxemics, a conceptual framework for interactive vehicular applications that operationalizes proxemics to outside-the-vehicle interactions. We identify four zones around the vehicle affording different kinds of interactions and discuss the corresponding conceptual space along three dimensions (physical distance, interaction paradigm, and goal). We study the dimensions of this framework and synthesize our findings regarding drivers’ preferences for (i) information to obtain from their vehicles at a distance, (ii) system functions of their vehicles to control remotely, and (iii) devices (e.g., smartphones, smartglasses, smart key fobs) for interactions outside the vehicle. We discuss the positioning of smart vehicle proxemics in the context of proxemic interactions more generally, and expand on the dichotomy and complementarity of outside-the-vehicle and inside-the-vehicle interactions for new applications enabled by smart vehicle proxemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.teslaring.com.

  2. 2.

    https://www.teslawearable.com.

  3. 3.

    https://www.bimmer-tech.net/blog/item/118-bmw-display-key.

  4. 4.

    https://play.google.com/store/apps/details?id=com.elibera.android.findmycar.

  5. 5.

    https://play.google.com/store/apps/details?id=de.volkswagen.pap.

  6. 6.

    https://www.bimmer-tech.net/blog/item/118-bmw-display-key.

  7. 7.

    https://shop.tesla.com/search?searchTerm=KEYS.

  8. 8.

    https://www.tesla.com/support/tesla-app.

  9. 9.

    Class-2 Bluetooth operates at a typical range of 10 m; Class-3 at about 1 m; see more details on the Bluetooth SIG page https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range.

  10. 10.

    Class-1 Bluetooth operates at a typical range of 100 m; see the link above.

  11. 11.

    https://ambientdevices.myshopify.com/products/stock-orb.

  12. 12.

    One participant had a driving experience of six months only.

  13. 13.

    A professional driver.

  14. 14.

    https://www.bimmer-tech.net/blog/item/118-bmw-display-key.

References

  1. Aiordăchioae, A., Vatavu, R.D., Popovici, D.M.: A design space for vehicular lifelogging to support creation of digital content in connected cars. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2019. ACM, New York (2019). https://doi.org/10.1145/3319499.3328234

  2. Alvarez, I., Martin, A., Dunbar, J., Taiber, J., Wilson, D.M., Gilbert, J.E.: Voice interfaced vehicle user help. In: Proceedings of the 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2010, pp. 42–49. ACM, New York (2010). https://doi.org/10.1145/1969773.1969782

  3. Angelini, L., et al.: Gesturing on the steering wheel: a user-elicited taxonomy. In: Proceedings of AutomotiveUI 2014, pp. 1–8. ACM, New York (2014). https://doi.org/10.1145/2667317.2667414

  4. Angelini, L., et al.: Opportunistic synergy: a classifier fusion engine for micro-gesture recognition. In: Proceedings of AutomotiveUI 2013, pp. 30–37. ACM, New York (2013). https://doi.org/10.1145/2516540.2516563

  5. Annett, M., Grossman, T., Wigdor, D., Fitzmaurice, G.: Medusa: a proximity-aware multi-touch tabletop. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, pp. 337–346. ACM, New York (2011). https://doi.org/10.1145/2047196.2047240

  6. Arena, F., Pau, G.: An overview of vehicular communications. Future Internet 11, 27 (2019). https://doi.org/10.3390/fi11020027

  7. Ballendat, T., Marquardt, N., Greenberg, S.: Proxemic interaction: designing for a proximity and orientation-aware environment. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010, pp. 121–130. ACM, New York (2010). https://doi.org/10.1145/1936652.1936676

  8. Bilius, L.B., Vatavu, R.D.: A synopsis of input modalities for in-vehicle infotainment and consumption of interactive media. In: Proceedings of the ACM International Conference on Interactive Media Experiences, IMX 2020, pp. 195–199. ACM, New York (2020). https://doi.org/10.1145/3391614.3399400

  9. Bilius, L.B., Vatavu, R.D.: A multistudy investigation of drivers and passengers’ gesture and voice input preferences for in-vehicle interactions. J. Intell. Transp. Syst. (2020). https://doi.org/10.1080/15472450.2020.1846127

  10. Bilius, L.B., Vatavu, R.D., Marquardt, N.: Exploring application opportunities for smart vehicles in the continuous interaction space inside and outside the vehicle. In: Proceedings of the 18th International Conference on Human-Computer Interaction, INTERACT 2021, 10 p. (2021)

    Google Scholar 

  11. Brand, D., Büchele, K., Meschtscherjakov, A.: Pointing at the HUD: gesture interaction using a leap motion. In: Adjunct Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2016 Adjunct, pp. 167–172. ACM, New York (2016). https://doi.org/10.1145/3004323.3004343

  12. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006). https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

  13. Busold, C., et al.: Smart keys for cyber-cars: secure smartphone-based NFC-enabled car immobilizer. In: Proceedings of the 3rd ACM Conference on Data and Application Security and Privacy, pp. 233–242 (2013). https://doi.org/10.1145/2435349.2435382

  14. Cernea, D., Olech, P.S., Ebert, A., Kerren, A.: Controlling in-vehicle systems with a commercial EEG headset: performance and cognitive load. OpenAccess Series in Informatics, vol. 27, pp. 113–122 (2012). https://doi.org/10.4230/OASIcs.VLUDS.2011.113

  15. Chang, W.J., Chen, L.B., Chiou, Y.Z.: Design and implementation of a drowsiness-fatigue-detection system based on wearable smart glasses to increase road safety. IEEE Trans. Cons. Electronics (2018). https://doi.org/10.1109/TCE.2018.2872162

  16. Chen, Y.L., Chen, Y.H., Chen, C.J., Wu, B.F.: Nighttime vehicle detection for driver assistance and autonomous vehicles. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 687–690 (2006). https://doi.org/10.1109/ICPR.2006.858

  17. Chirca, M., Chapuis, R., Debain, C., Lenain, R., Martin, G.: Autonomous valet parking system architecture. In: Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems (2015). https://doi.org/10.1109/ITSC.2015.421

  18. Claudine, B., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021). https://doi.org/10.1016/j.eswa.2020.113816

  19. Cook, D., Das, S.: Smart Environments: Technology, Protocols & Applications (Wiley Series on Parallel & Distributed Computing). Wiley-Interscience, USA (2004)

    Google Scholar 

  20. Coppola, R., Morisio, M.: Connected car: technologies, issues, future trends. ACM Comput. Surv. 49(3) (2016). https://doi.org/10.1145/2971482

  21. Detjen, H., Faltaous, S., Geisler, S., Schneegass, S.: User-defined voice and mid-air gesture commands for maneuver-based interventions in automated vehicles. In: Proceedings of Mensch Und Computer 2019, MuC 2019, pp. 341–348. ACM, New York (2019). https://doi.org/10.1145/3340764.3340798

  22. Dey, D., Terken, J.: Pedestrian interaction with vehicles: roles of explicit and implicit communication. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2017, pp. 109–113. ACM, New York (2017). https://doi.org/10.1145/3122986.3123009

  23. Domeyer, J., Dinparastdjadid, A., Lee, J., Douglas, G., Alsaid, A., Price, M.: Proxemics and kinesics in automated vehicle-pedestrian communication: representing ethnographic observations. Transp. Res. Rec. 2673 (2019). https://doi.org/10.1177/0361198119848413

  24. Gheran, B.F., Vatavu, R.D.: From controls on the steering wheel to controls on the finger: using smart rings for in-vehicle interactions. In: Proceedings of DIS 2020 Companion (2020). https://doi.org/10.1145/3393914.3395851

  25. Greenberg, S., Kuzuoka, H.: Using digital but physical surrogates to mediate awareness, communication and privacy in media spaces. Pers. Technol. 3, 182–198 (1999). https://doi.org/10.1007/BF01540552

  26. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., Wang, M.: Proxemic interactions: the new ubicomp? Interactions 18(1), 42–50 (2011). https://doi.org/10.1145/1897239.1897250

  27. Grønbæk, J.E., Knudsen, M.S., O’Hara, K., Krogh, P.G., Vermeulen, J., Petersen, M.G.: Proxemics beyond proximity: designing for flexible social interaction through cross-device interaction. In: Proceedings of the Conference on Human Factors in Computing Systems, CHI 2020, pp. 1–14 (2020). https://doi.org/10.1145/3313831.3376379

  28. Hall, E.T.: The Hidden Dimension. Doubleday, Garden City (1966)

    Google Scholar 

  29. He, W., Yan, G., Xu, L.: Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inform. 10, 1587–1595 (2014). https://doi.org/10.1109/TII.2014.2299233

  30. Khayyam, H., Javadi, B., Jalili, M., Jazar, R.: Artificial intelligence and internet of things for autonomous vehicles. In: Jazar, R., Dai, L. (eds.) Nonlinear Approaches in Engineering Applications, pp. 39–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18963-1_2

  31. Kim, J., Jeong, M., Lee, S.C.: “Why did this voice agent not understand me?”: error recovery strategy for in-vehicle voice user interface. In: Proceedings of AutomotiveUI 2019, pp. 146–150. ACM (2019). https://doi.org/10.1145/3349263.3351513

  32. Kim, W.A., V. Tefft, B.: American Driving Survey, 2014–2017 (Research Brief) (2019). https://aaafoundation.org/american-driving-survey-2014-2017/

  33. Kuniavsky, M.: Smart Things: Ubiquitous Computing User Experience Design. Morgan Kaufmann (2010). https://www.elsevier.com/books/smart-things/kuniavsky/978-0-12-374899-7

  34. Ledo, D., Greenberg, S., Marquardt, N., Boring, S.: Proxemic-aware controls: designing remote controls for ubiquitous computing ecologies. In: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2015, pp. 187–198. ACM (2015). https://doi.org/10.1145/2785830.2785871

  35. Lee, Y.M., et al.: Road users rarely use explicit communication when interacting in today’s traffic: implications for automated vehicles. Cogn. Tech. Work (2020). https://doi.org/10.1007/s10111-020-00635-y

  36. Liang, X., Guler, S.I., Gayah, V.: Traffic signal control optimization in a connected vehicle environment considering pedestrians. Transp. Res. Rec. 2674(07) (2020). https://doi.org/10.1177/0361198120936268

  37. Lin, H.: Using passenger elicitation for developing gesture design guidelines for adjusting highly automated vehicle dynamics. In: Proceedings of DIS 2019 Companion, pp. 97–100. ACM (2019). https://doi.org/10.1145/3301019.3324878

  38. Lyu, N., Wen, J., Zhicheng, D., Wu, C.: Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3019050

  39. Markkula, G., et al.: Defining interactions: a conceptual framework for understanding interactive behaviour in human and automated road traffic. Theor. Issues Ergon. Sci. 21(6), 728–752 (2020). https://doi.org/10.1080/1463922X.2020.1736686

  40. Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg, S.: The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, pp. 315–326. ACM (2011). https://doi.org/10.1145/2047196.2047238

  41. May, K.R., Gable, T.M., Walker, B.N.: Designing an in-vehicle air gesture set using elicitation methods. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2017, pp. 74–83. ACM, New York (2017). https://doi.org/10.1145/3122986.3123015

  42. Mumm, J., Mutlu, B.: Human-robot proxemics: physical and psychological distancing in human-robot interaction. In: Proceedings of the 6th International Conference on Human-Robot Interaction, pp. 331–338. ACM (2011). https://doi.org/10.1145/1957656.1957786

  43. Nakrani, P.K.: Smart car technologies: a comprehensive study of the state of the art with analysis and trends. Master’s thesis, Arizona State University (2015). https://repository.asu.edu/items/30030

  44. Pogorelc, B., et al.: Semantic ambient media: from ambient advertising to ambient-assisted living. Multimedia Tools Appl. 58(2), 399–425 (2012). https://doi.org/10.1007/s11042-011-0917-8

  45. Raza, N., Jabbar, S., Han, J., Han, K.: Social vehicle-to-everything (V2X) communication model for intelligent transportation systems based on 5G scenario. In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, ICFNDS 2018. ACM, New York (2018). https://doi.org/10.1145/3231053.3231120

  46. Reininger, M., Miller, S., Zhuang, Y., Cappos, J.: A first look at vehicle data collection via smartphone sensors. In: Proceedings of the 2015 IEEE Sensors Applications Symposium (2015). https://doi.org/10.1109/SAS.2015.7133607

  47. Sadri, F.: Ambient intelligence: a survey. ACM Comput. Surv. 43(4) (2011). https://doi.org/10.1145/1978802.1978815

  48. Saghaei, H.: Design and Implementation of a Fleet Management System Using Novel GPS/GLONASS Tracker and Web-Based Software (2016). https://arxiv.org/abs/1610.02667

  49. Schipor, O.A., Vatavu, R.D.: Towards interactions with augmented reality systems in hyper-connected cars. In: Proceedings of the 2nd Workshop on Charting the Way Towards Methods and Tools for Advanced Interactive Systems. HCI Engineering 2019 (2019). http://ceur-ws.org/Vol-2503/paper1_12.pdf

  50. Schipor, O.A., Vatavu, R.D.: Empirical results for high-definition video and augmented reality content delivery in hyper-connected cars. Interact. Comput. 33, 3–16 (2021). https://doi.org/10.1093/iwcomp/iwaa025

  51. Schipor, O.A., Vatavu, R.D., Vanderdonckt, J.: Euphoria: a scalable, event-driven architecture for designing interactions across heterogeneous devices in smart environments. Inf. Softw. Technol. 109, 43–59 (2019). https://doi.org/10.1016/j.infsof.2019.01.006

  52. Shakeri, G., Williamson, J.H., Brewster, S.: May the force be with you: ultrasound haptic feedback for mid-air gesture interaction in cars. In: Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2018, pp. 1–10. ACM (2018). https://doi.org/10.1145/3239060.3239081

  53. Tamoto, A., Itou, K.: Voice authentication by text dependent single utterance for in-car environment. In: Proceedings of the 10th International Symposium on Information and Communication Technology, pp. 336–341 (2019). https://doi.org/10.1145/3368926.3369669

  54. Tanase, C., Vatavu, R.D., Pentiuc, S., Graur, A.: Detecting and tracking multiple users in the proximity of interactive tabletops. Adv. Electr. Comput. Eng. 8 (2008). https://doi.org/10.4316/aece.2008.02011

  55. Tombeng, M.T., Najoan, R., Karel, N.: Smart car: digital controlling system using android smartwatch voice recognition. In: 2018 6th International Conference on Cyber and IT Service Management, pp. 1–5 (2018). https://doi.org/10.1109/CITSM.2018.8674359

  56. Uhlemann, E.: Introducing connected vehicles [connected vehicles]. Veh. Technol. Mag. 10 (2015). https://doi.org/10.1109/MVT.2015.2390920

  57. Vatavu, R.D.: There’s a world outside your TV: exploring interactions beyond the physical TV screen. In: Proceedings of the 11th Conference on Interactive TV and Video, EuroITV 2013, pp. 143–152 (2013). https://doi.org/10.1145/2465958.2465972

  58. Vermeulen, J., Luyten, K., Coninx, K., Marquardt, N., Bird, J.: Proxemic flow: dynamic peripheral floor visualizations for revealing and mediating large surface interactions. In: INTERACT 2015 (2015). https://doi.org/10.1007/978-3-319-22723-8_22

  59. Vogel, D., Balakrishnan, R.: Interactive public ambient displays: transitioning from implicit to explicit, public to personal, interaction with multiple users. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, UIST 2004, pp. 137–146 (2004). https://doi.org/10.1145/1029632.1029656

  60. Wang, X., Shen, S., Bezzina, D., Sayer, J., Liu, H., Feng, Y.: Data infrastructure for connected vehicle applications. Transp. Res. Rec. 2674 (2020). https://doi.org/10.1177/0361198120912424

  61. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1083–1092 (2009). https://doi.org/10.1145/1518701.1518866

  62. Wolf, K., Abdelrahman, Y., Kubitza, T., Schmidt, A.: Proxemic zones of exhibits and their manipulation using floor projection. In: Proceedings of the 5th ACM International Symposium on PerDis 2016, pp. 33–37. ACM (2016). https://doi.org/10.1145/2914920.2915012

  63. Yeh, A., et al.: Exploring proxemics for human-drone interaction. In: Proceedings of the 5th International Conference on Human Agent Interaction, HAI 2017, pp. 81–88. ACM (2017). https://doi.org/10.1145/3125739.3125773

  64. Zhang, Z., Zhang, S., Jiao, S.: A vehicle lane-changing model based on connected vehicles. In: Proceedings of the 20th COTA International Conference of Transportation Professionals, pp. 3027–3038 (2020). https://dx.doi.org/10.1061/9780784482933.261

Download references

Acknowledgments

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project PN-III-P1-1.2-PCCDI-2017-0917 (21PCCDI/2018), within PNCDI III. The black and white “man” and “car” icons used in Fig. 1 were made by DinosoftLabs (https://www.flaticon.com/authors/dinosoftlabs, the “Insurance” icon pack) from https://www.flaticon.com, released free for personal and commercial purpose with attribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Daniel Vatavu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilius, LB., Vatavu, RD., Marquardt, N. (2021). Smart Vehicle Proxemics: A Conceptual Framework Operationalizing Proxemics in the Context of Outside-the-Vehicle Interactions. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85616-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85615-1

  • Online ISBN: 978-3-030-85616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics