Skip to main content

Automatic Content Analysis of Student Moral Discourse in a Collaborative Learning Activity

  • Conference paper
  • First Online:
Collaboration Technologies and Social Computing (CollabTech 2021)

Abstract

In most computer supported collaborative learning activities, the teacher monitors and/or reviews data generated by students and groups as they complete the learning tasks, in order to provide guidance and feedback. Without appropriate technological means that support the processes of collection and selection of students’ generated responses, these duties can result in a high cognitive load for teachers, especially if students generate textual, qualitative content that requires real-time reviewing. In this research we deal with EthicApp, a collaborative application in which this problem is apparent, as students analyze a given ethics case individually and in small groups and deliver written judgements in each phase of the activity. We present a solution to the problem, based on enhancing EthicApp’s teacher’s interface with automated content analysis capabilities. This includes a dashboard that automatically displays students’ most relevant contributions, and cluster visualizations that permit identifying groups of students with similar responses to activity tasks. Validation of the approach was based on a dataset comprising 4,366 comments about an academic ethics case, which were written by 520 students divided into 19 class groups. Expert judgement was applied to evaluate content analysis effectiveness at selecting comments that are both meaningful and representative of students’ different views. More than 80% of comment selections were found valuable, according to experts’ analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uribe, P., Jiménez, A., Araya, R., Lämsä, J., Hämäläinen, R., Viiri, J.: Automatic content analysis of computer-supported collaborative inquiry-based learning using deep networks and attention mechanisms. In: Vittorini, P., Di Mascio, T., Tarantino, L., Temperini, M., Gennari, R., De la Prieta, F. (eds.) MIS4TEL 2020. AISC, vol. 1241, pp. 95–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52538-5_11

    Chapter  Google Scholar 

  2. Chang, Y.-H., Chang, C.-Y., Tseng, Y.-H.: Trends of science education research: an automatic content analysis. J. Sci. Educ. Technol. 19(4), 315–331 (2010)

    Article  Google Scholar 

  3. Alvarez, C., Zurita, G., Baloian, N., Jerez, O., Peñafiel, S.: A CSCL script for supporting moral reasoning in the ethics classroom. In: Nakanishi, H., Egi, H., Chounta, I.-A., Takada, H., Ichimura, S., Hoppe, U. (eds.) CRIWG+CollabTech 2019. LNCS, vol. 11677, pp. 62–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28011-6_5

    Chapter  Google Scholar 

  4. Daems, O., et al.: Using content analysis and domain ontologies to check learners’ understanding of science concepts. J. Comput. Educ. 1(2), 113–131 (2014)

    Article  Google Scholar 

  5. Lui, A.K.-F., Li, S.C., Choy, S.O.: An evaluation of automatic text categorization in online discussion analysis. In: Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007). IEEE (2007)

    Google Scholar 

  6. Gandz, J., Hayes, N.: Teaching business ethics. J. Bus. Ethics 7(9), 657–669 (1988)

    Article  Google Scholar 

  7. McCoy, C.S.: Management of values: the ethical difference in corporate policy and performance (1985)

    Google Scholar 

  8. Butts, D., Janie, B.: Nursing ethics: across the curriculum and into practice book review. Online J. Health Ethics 2(2), 2 (2005)

    Google Scholar 

  9. Patel, P.: Engineers, ethics, and the VW scandal. IEEE Spectr. 25 (2015)

    Google Scholar 

  10. Zunger, J.: Computer science faces an ethics crisis. The Cambridge Analytica scandal proves it. Boston Globe 22 (2018)

    Google Scholar 

  11. EMOL. UC suspende hasta por un año a alumnos que participaron en copia masiva por WhatsApp (2016). https://www.emol.com/noticias/Nacional/2016/06/23/809292/UC-suspende-hasta-por-un-ano-a-alumnos-que-participaron-en-copia-masiva-por-WhatsApp.html. Accessed 1 Jan 2020

  12. Leighton, P.: El alto costo de las conductas académicas deshonestas. El Mercurio (2018). http://www.economiaynegocios.cl/noticias/noticias.asp?id=452080. Accessed 1 Jan 2020

  13. AACSB. Ethics Education in Business Schools (2004). https://www.aacsb.edu/~/media/AACSB/Publications/research-reports/ethics-education.ashx. Accessed 1 Jan 2020

  14. ABET. Rationale for revising criteria 3 (2016). http://www.abet.org/accreditation/accreditation-criteria/accreditation-alerts/rationale-for-revising-criteria-3/. Accessed 1 Jan 2020

  15. AAA, American Accounting Association. Committee on the Future Structure, Content, and Scope of Accounting Education (The Bedford Committee): Future accounting education: preparing for the expanding profession. Issues Account. Educ. 1(1), 168–195 (1986)

    Google Scholar 

  16. Apostolou, B., Dull, R.B., Schleifer, L.L.: A framework for the pedagogy of accounting ethics. Account. Educ. 22(1), 1–17 (2013)

    Article  Google Scholar 

  17. Holsapple, M.A., et al.: Framing faculty and student discrepancies in engineering ethics education delivery. J. Eng. Educ. 101(2), 169–186 (2012)

    Article  Google Scholar 

  18. Felton, E.L., Sims, R.R.: Teaching business ethics: targeted outputs. J. Bus. Ethics 60(4), 377–391 (2005)

    Article  Google Scholar 

  19. Johnson, J.F., et al.: Case-based ethics education: the impact of cause complexity and outcome favorability on ethicality. J. Empirical Res. Hum. Res. Ethics 7(3), 63–77 (2012)

    Article  Google Scholar 

  20. Hunt, S.D., Vitell, S.J.: The general theory of marketing ethics: a revision and three questions. J. Macromark. 26(2), 143–153 (2006)

    Article  Google Scholar 

  21. Illingworth, S.: Approaches to Ethics in Higher Education: Teaching Ethics Across the Curriculum (2004)

    Google Scholar 

  22. Rafinda, A., Gál, T., Purwaningtyas, P.: Business ethics course on student moral reasoning. Oradea J. Bus. Econ. 4(Special), 60–68 (2019)

    Article  Google Scholar 

  23. Carvallo, A., et al.: Automatic document screening of medical literature using word and text embeddings in an active learning setting. Scientometrics 125(3), 3047–3084 (2020)

    Article  Google Scholar 

  24. Lai, L.S., To, W.M.: Content analysis of social media: a grounded theory approach. J. Electron. Commer. Res. 16(2), 138 (2015)

    Google Scholar 

  25. Günther, E., Quandt, T.: Word counts and topic models: automated text analysis methods for digital journalism research. Digit. J. 4(1), 75–88 (2016)

    Google Scholar 

  26. Chau, H., et al.: Automatic concept extraction for domain and student modeling in adaptive textbooks. Int. J. Artif. Intell. Educ. 1–27 (2020)

    Google Scholar 

  27. Ferreira, M., et al.: Towards automatic content analysis of social presence in transcripts of online discussions. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (2020)

    Google Scholar 

  28. Mirzaei, M., Sahebi, S., Brusilovsky, P.: Annotated examples and parameterized exercises: analyzing students’ behavior patterns. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 308–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_26

    Chapter  Google Scholar 

  29. Luo, W., et al.: Automatic summarization of student course feedback. arXiv preprint arXiv:1805.10395 (2018)

  30. Zou, W., et al.: Exploring the relationship between social presence and learners’ prestige in MOOC discussion forums using automated content analysis and social network analysis. Comput. Hum. Behav. 115, 106582 (2021)

    Article  Google Scholar 

  31. Moore, R.L., Oliver, K.M., Wang, C.: Setting the pace: examining cognitive processing in MOOC discussion forums with automatic text analysis. Interact. Learn. Environ. 27(5–6), 655–669 (2019)

    Article  Google Scholar 

  32. Crossley, S.A., et al.: Incorporating learning characteristics into automatic essay scoring models: what individual differences and linguistic features tell us about writing quality. J. Educ. Data Min. 8(2), 1–19 (2016)

    MathSciNet  Google Scholar 

  33. Khan, W., et al.: A survey on the state-of-the-art machine learning models in the context of NLP. Kuwait J. Sci. 43(4) (2016)

    Google Scholar 

  34. Canete, J., et al.: Spanish pre-trained BERT model and evaluation data. In: PML4DC at ICLR, vol. 2020 (2020)

    Google Scholar 

  35. Alvarez, C., Zurita, G., Baloian, N.: Applying the concept of implicit HCI to a groupware environment for teaching ethics. Pers. Ubiquit. Comput. 1–19 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarez, C., Zurita, G., Carvallo, A., Ramírez, P., Bravo, E., Baloian, N. (2021). Automatic Content Analysis of Student Moral Discourse in a Collaborative Learning Activity. In: Hernández-Leo, D., Hishiyama, R., Zurita, G., Weyers, B., Nolte, A., Ogata, H. (eds) Collaboration Technologies and Social Computing. CollabTech 2021. Lecture Notes in Computer Science(), vol 12856. Springer, Cham. https://doi.org/10.1007/978-3-030-85071-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85071-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85070-8

  • Online ISBN: 978-3-030-85071-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics