Skip to main content

Application of Machine Learning in Statistical Process Control Charts: A Survey and Perspective

  • Chapter
  • First Online:
Control Charts and Machine Learning for Anomaly Detection in Manufacturing

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1778 Accesses

Abstract

Over the past decades, control charts, one of the essential tools in Statistical Process Control (SPC), have been widely implemented in manufacturing industries as an effective approach for Anomaly Detection (AD). Thanks to the development of technologies like the Internet of Things (IoT) and Artificial Intelligence (AI), Smart Manufacturing (SM) has become an important concept for expressing the end goal of digitization in manufacturing. However, SM requires a more automatic procedure with capabilities to deal with huge data from the continuous and simultaneous process. Hence, traditional control charts of SPC now find difficulties in reality activities including designing, pattern recognition, and interpreting stages. Machine Learning (ML) algorithms have emerged as powerful analytic tools and great assistance that can be integrating to control charts of SPC to solve these issues. Therefore, the purpose of this chapter is first to presents a survey on the applications of ML techniques in the stages of designing, pattern recognition, and interpreting of control charts respectively in SPC especially in the context of SM for AD. Second, difficulties and challenges in these areas are discussed. Third, perspectives of ML techniques-based control charts for AD in SM are proposed. Finally, a case study of an ML-based control chart for bearing failure AD is also provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadri F, Harrou F, Chaabane S, Sun Y, Tahon C (2016) Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems. Neurocomputing 173:2102–2114

    Article  Google Scholar 

  2. Münz G, Carle, G (2008) Application of forecasting techniques and control charts for traffic anomaly detection. In: Proceedings of the 19th ITC specialist seminar on network usage and traffic

    Google Scholar 

  3. Tran PH, Tran KP, Truong TH, Heuchenne C, Tran H, Le TMH (2018) Real time data-driven approaches for credit card fraud detection. In: Proceedings of the 2018 international conference on e-business and applications, pp 6–9

    Google Scholar 

  4. Tran PH, Heuchenne C, Nguyen HD, Marie H (2020, in press) Monitoring coefficient of variation using one-sided run rules control charts in the presence of measurement errors. J Appl Stat 1–27. https://doi.org/10.1080/02664763.2020.1787356

  5. Tran PH, Heuchenne C (2021) Monitoring the coefficient of variation using variable sampling interval CUSUM control charts. J Stat Comput Simul 91(3):501–521

    Article  MathSciNet  Google Scholar 

  6. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv (CSUR) 41(3):1–58

    Article  Google Scholar 

  7. Edgeworth FY (1887) XLI. on discordant observations. London Edinburgh Dublin Philos Mag J Sci 23(143):364–375

    Article  MATH  Google Scholar 

  8. Shewhart WA (1924) Some applications of statistical methods to the analysis of physical and engineering data. Bell Syst Tech J 3(1):43–87

    Article  Google Scholar 

  9. Alwan LC (1992) Effects of autocorrelation on control chart performance. Commun Stat Theory Methods 21(4):1025–1049

    Article  MATH  Google Scholar 

  10. Noorossana R, Vaghefi SJM (2006) Effect of autocorrelation on performance of the MCUSUM control chart. Qual Reliab Eng Int 22(2):191–197

    Article  Google Scholar 

  11. Costa AFB, Castagliola P (2011) Effect of measurement error and autocorrelation on the \(\bar{X}\) chart. J Appl Stat 38(4):661–673

    Article  MathSciNet  MATH  Google Scholar 

  12. Leoni RC, Costa AFB, Machado MAG (2015) The effect of the autocorrelation on the performance of the T2 chart. Eur J Oper Res 247(1):155–165

    Article  MATH  Google Scholar 

  13. Vanhatalo E, Kulahci M (2015) The effect of autocorrelation on the hotelling T2 control chart. Qual Reliab Eng Int 31(8):1779–1796

    Article  Google Scholar 

  14. Guh RS, Hsieh YC (1999) A neural network based model for abnormal pattern recognition of control charts. Comput Ind Eng 36(1):97–108

    Article  Google Scholar 

  15. Swift JA, Mize JH (1995) Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems. Comput Ind Eng 28(1):81–91

    Article  Google Scholar 

  16. Guo Y, Dooley KJ (1992) Identification of change structure in statistical process control. Int J Prod Res 30(7):1655–1669

    Article  Google Scholar 

  17. Miao Z, Yang M (2019) Control chart pattern recognition based on convolution neural network. In: Smart innovations in communication and computational sciences. Springer, pp 97–104

    Google Scholar 

  18. Zan T, Liu Z, Wang H, Wang M, Gao X (2020) Control chart pattern recognition using the convolutional neural network. J Intell Manuf 31(3):703–716

    Article  Google Scholar 

  19. Wang TY, Chen LH (2002) Mean shifts detection and classification in multivariate process: a neural-fuzzy approach. J Intell Manuf 13(3):211–221

    Article  Google Scholar 

  20. Low C, Hsu CM, Yu FJ (2003) Analysis of variations in a multi-variate process using neural networks. Int J Adv Manuf Technol 22(11):911–921

    Article  Google Scholar 

  21. Niaki STA, Abbasi B (2005) Fault diagnosis in multivariate control charts using artificial neural networks. Qual Reliab Eng Int 21(8):825–840

    Article  Google Scholar 

  22. Western E (1956) Statistical quality control handbook. Western Electric Co

    Google Scholar 

  23. Swift JA (1987) Development of a knowledge based expert system for control chart pattern recognition and analysis. PhD thesis, Oklahoma State University

    Google Scholar 

  24. Shewhart M (1992) Interpreting statistical process control (SPC) charts using machine learning and expert system techniques. In: Proceedings of the IEEE 1992 national aerospace and electronics conference@ m\(\_\)NAECON 1992. IEEE, pp 1001–1006

    Google Scholar 

  25. Hotelling H (1947) Multivariate quality control. Techniques of statistical analysis

    Google Scholar 

  26. Woodall WH, Ncube MM (1985) Multivariate CUSUM quality-control procedures. Technometrics 27(3):285–292

    Article  MathSciNet  MATH  Google Scholar 

  27. Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34(1):46–53

    Article  MATH  Google Scholar 

  28. Demircioglu Diren D, Boran S, Cil I (2020) Integration of machine learning techniques and control charts in multivariate processes. Scientia Iranica 27(6):3233–3241

    Google Scholar 

  29. Guh RS, Tannock JDT (1999) Recognition of control chart concurrent patterns using a neural network approach. Int J Prod Res 37(8):1743–1765

    Article  MATH  Google Scholar 

  30. Wu KL, Yang MS (2003) A fuzzy-soft learning vector quantization. Neurocomputing 55(3–4):681–697

    Article  Google Scholar 

  31. Cheng CS, Lee HT (2016) Diagnosing the variance shifts signal in multivariate process control using ensemble classifiers. J Chin Inst Eng 39(1):64–73

    Article  Google Scholar 

  32. Kang Z, Catal C, Tekinerdogan B (2020) Machine learning applications in production lines: a systematic literature review. Comput Ind Eng 149:106773

    Article  Google Scholar 

  33. Qiu P, Xie X (2021, in press) Transparent sequential learning for statistical process control of serially correlated data. Technometrics 1–29. https://doi.org/10.1080/00401706.2021.1929493

  34. Weese M, Martinez W, Megahed FM, Jones-Farmer LA (2016) Statistical learning methods applied to process monitoring: an overview and perspective. J Qual Technol 48(1):4–24

    Article  Google Scholar 

  35. Apsemidis A, Psarakis S, Moguerza JM (2020) A review of machine learning kernel methods in statistical process monitoring. Comput Ind Eng 142:106376

    Article  Google Scholar 

  36. Mashuri M, Haryono H, Ahsan M, Aksioma DF, Wibawati W, Khusna H (2019) Tr r2 control charts based on kernel density estimation for monitoring multivariate variability process. Cogent Eng 6(1):1665949

    Article  Google Scholar 

  37. Chinnam RB (2002) Support vector machines for recognizing shifts in correlated and other manufacturing processes. Int J Prod Res 40(17):4449–4466

    Article  MATH  Google Scholar 

  38. Byvatov E, Sadowski J, Fechner U, Schneider G (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43(6):1882–1889

    Article  Google Scholar 

  39. Li L, Jia H (2013) On fault identification of MEWMA control charts using support vector machine models. In: International Asia conference on industrial engineering and management innovation (IEMI2012) proceedings. Springer, pp 723–730

    Google Scholar 

  40. Camci F, Chinnam RB (2008) General support vector representation machine for one-class classification of non-stationary classes. Pattern Recogn 41(10):3021–3034

    Article  MATH  Google Scholar 

  41. Sun R, Tsung F (2003) A kernel-distance-based multivariate control chart using support vector methods. Int J Prod Res 41(13):2975–2989

    Article  MATH  Google Scholar 

  42. Ning X, Tsung F (2013) Improved design of kernel distance-based charts using support vector methods. IIE Trans 45(4):464–476

    Article  Google Scholar 

  43. Sukchotrat T, Kim SB, Tsung F (2009) One-class classification-based control charts for multivariate process monitoring. IIE Trans 42(2):107–120

    Article  Google Scholar 

  44. Kim SB, Jitpitaklert W, Sukchotrat T: One-class classification-based control charts for monitoring autocorrelated multivariate processes. Commun Stat-Simul Comput® 39(3):461–474 (2010)

    Google Scholar 

  45. Gani W, Limam M (2013) Performance evaluation of one-class classification-based control charts through an industrial application. Qual Reliab Eng Int 29(6):841–854

    Article  Google Scholar 

  46. Gani W, Limam M (2014) A one-class classification-based control chart using the-means data description algorithm. J Qual Reliab Eng 2014. https://www.hindawi.com/journals/jqre/2014/239861/

  47. Maboudou-Tchao EM, Silva IR, Diawara N (2018) Monitoring the mean vector with Mahalanobis kernels. Qual Technol Quant Manag 15(4):459–474

    Article  Google Scholar 

  48. Zhang J, Li Z, Chen B, Wang Z (2014) A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Comput Ind Eng 78:205–212

    Article  Google Scholar 

  49. Wang FK, Bizuneh B, Cheng XB (2019) One-sided control chart based on support vector machines with differential evolution algorithm. Qual Reliab Eng Int 35(6):1634–1645

    Article  Google Scholar 

  50. He S, Jiang W, Deng H (2018) A distance-based control chart for monitoring multivariate processes using support vector machines. Ann Oper Res 263(1):191–207

    Article  MathSciNet  MATH  Google Scholar 

  51. Maboudou-Tchao EM (2020) Change detection using least squares one-class classification control chart. Qual Technol Quant Manag 17(5):609–626

    Article  Google Scholar 

  52. Salehi M, Bahreininejad A, Nakhai I (2011) On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 74(12):2083–2095. ISSN 0925-2312

    Google Scholar 

  53. Hu S, Zhao L (2015) A support vector machine based multi-kernel method for change point estimation on control chart. In: 2015 IEEE international conference on systems, man, and cybernetics, pp 492–496

    Google Scholar 

  54. Gani W, Taleb H, Limam M (2010) Support vector regression based residual control charts. J Appl Stat 37(2):309–324

    Article  MathSciNet  MATH  Google Scholar 

  55. Kakde D, Peredriy S, Chaudhuri A (2017) A non-parametric control chart for high frequency multivariate data. In: 2017 annual reliability and maintainability symposium (RAMS). IEEE, pp 1–6

    Google Scholar 

  56. Jang S, Park SH, Baek JG (2017) Real-time contrasts control chart using random forests with weighted voting. Expert Syst Appl 71:358–369. ISSN 0957-4174

    Google Scholar 

  57. Issam BK, Mohamed L (2008) Support vector regression based residual MCUSUM control chart for autocorrelated process. Appl Math Comput 201(1):565–574. ISSN 0096-3003

    Google Scholar 

  58. Du S, Huang D, Lv J (2013) Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines. Comput Ind Eng 66(4):683–695. ISSN 0360-8352

    Google Scholar 

  59. Silva J, Lezama OBP, Varela N, Otero MS, Guiliany JG, Sanabria ES, Rojas VA (2019) U-control chart based differential evolution clustering for determining the number of cluster in k-means. In: International conference on green, pervasive, and cloud computing. Springer, pp 31–41

    Google Scholar 

  60. Thirumalai C, SaiSharan GV, Krishna KV, Senapathi KJ (2017) Prediction of diabetes disease using control chart and cost optimization-based decision. In: 2017 International conference on trends in electronics and informatics (ICEI), pp 996–999

    Google Scholar 

  61. Stefatos G, Hamza AB (2007) Statistical process control using kernel PCA. In: 2007 Mediterranean conference on control & automation. IEEE, pp 1–6

    Google Scholar 

  62. Phaladiganon P, Kim SB, Chen VCP, Jiang W (2013) Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Syst Appl 40(8):3044–3054. ISSN 0957-4174

    Google Scholar 

  63. Kullaa J (2003) Damage detection of the z24 bridge using control charts. Mech Syst Signal Process 17(1):163–170. ISSN 0888-3270

    Google Scholar 

  64. Lee JM, Yoo CK, Choi SW, Vanrolleghem PA, Lee IB (2004) Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 59(1):223–234. ISSN 0009-2509

    Google Scholar 

  65. Ahsan M, Khusna H, Mashuri M, Lee MH (2020) Multivariate control chart based on kernel PCA for monitoring mixed variable and attribute quality characteristics. Symmetry 12(11):1838

    Article  Google Scholar 

  66. Ahsan M, Prastyo DD, Mashuri M, Kuswanto H, Khusna H (2018) Multivariate control chart based on PCA mix for variable and attribute quality characteristics. Prod Manuf Res 6(1):364–384

    Google Scholar 

  67. Mashuri M, Ahsan M, Prastyo DD, Kuswanto H, Khusna H (2021) Comparing the performance of \(t^2\) chart based on PCA mix, kernel PCA mix, and mixed kernel PCA for network anomaly detection. J Phys Conf Ser 1752:012008

    Article  Google Scholar 

  68. Lee WJ, Triebe MJ, Mendis GP, Sutherland JW (2020) Monitoring of a machining process using kernel principal component analysis and kernel density estimation. J Intell Manuf 31(5):1175–1189

    Article  Google Scholar 

  69. Arkat J, Niaki STA, Abbasi B (2007) Artificial neural networks in applying MCUSUM residuals charts for AR(1) processes. Appl Math Comput 189(2):1889–1901 ISSN 0096-3003

    MathSciNet  MATH  Google Scholar 

  70. Lee S, Kwak M, Tsui KL, Kim SB (2019) Process monitoring using variational autoencoder for high-dimensional nonlinear processes. Eng Appl Artif Intell 83:13–27

    Article  Google Scholar 

  71. Chen S, Yu J (2019) Deep recurrent neural network-based residual control chart for autocorrelated processes. Qual Reliab Eng Int 35(8):2687–2708

    Article  Google Scholar 

  72. Niaki STA, Abbasi B (2005) Fault diagnosis in multivariate control charts using artificial neural networks. Qual Reliab Eng Int 21(8):825–840

    Article  Google Scholar 

  73. Chen P, Li Y, Wang K, Zuo MJ, Heyns PS, Baggerohr S (2021) A threshold self-setting condition monitoring scheme for wind turbine generator bearings based on deep convolutional generative adversarial networks. Measurement 167:108234 ISSN 0263-2241

    Article  Google Scholar 

  74. Pugh GA (1989) Synthetic neural networks for process control. Comput Ind Eng 17(1):24–26 ISSN 0360-8352

    Article  Google Scholar 

  75. Li TF, Hu S, Wei ZY, Liao ZQ (2013) A framework for diagnosing the out-of-control signals in multivariate process using optimized support vector machines. Math Probl Eng 2013. https://www.hindawi.com/journals/mpe/2013/494626/

  76. Guh RS (2008) Real-time recognition of control chart patterns in autocorrelated processes using a learning vector quantization network-based approach. Int J Prod Res 46(14):3959–3991

    Article  MATH  Google Scholar 

  77. Zaman M, Hassan A (2021) Fuzzy heuristics and decision tree for classification of statistical feature-based control chart patterns. Symmetry 13(1):110 ISSN 2073-8994

    Article  Google Scholar 

  78. Hachicha W, Ghorbel A (2012) A survey of control-chart pattern-recognition literature (1991–2010) based on a new conceptual classification scheme. Comput Ind Eng 63(1):204–222 ISSN 0360-8352

    Article  Google Scholar 

  79. Pham DT, Oztemel E (1993) Control chart pattern recognition using combinations of multi-layer perceptrons and learning-vector-quantization neural networks. Proc Inst Mech Eng Part I J Syst Control Eng 207(2):113–118

    Google Scholar 

  80. Cheng CS (1997) A neural network approach for the analysis of control chart patterns. Int J Prod Res 35(3):667–697

    Article  MATH  Google Scholar 

  81. Addeh A, Khormali A, Golilarz NA (2018) Control chart pattern recognition using RBF neural network with new training algorithm and practical features. ISA Trans 79:202–216

    Article  Google Scholar 

  82. Yu J, Zheng X, Wang S (2019) A deep autoencoder feature learning method for process pattern recognition. J Process Control 79:1–15

    Article  Google Scholar 

  83. Xu J, Lv H, Zhuang Z, Lu Z, Zou D, Qin W (2019) Control chart pattern recognition method based on improved one-dimensional convolutional neural network. IFAC-PapersOnLine 52(13):1537–1542

    Article  Google Scholar 

  84. Yang WA, Zhou W (2015) Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble. J Intell Manuf 26:1161–1180

    Article  Google Scholar 

  85. Fuqua D, Razzaghi T (2020) A cost-sensitive convolution neural network learning for control chart pattern recognition. Expert Syst Appl 150:113275

    Article  Google Scholar 

  86. Pham DT, Wani MA (1997) Feature-based control chart pattern recognition. Int J Prod Res 35(7):1875–1890

    Article  MATH  Google Scholar 

  87. Ranaee V, Ebrahimzadeh A, Ghaderi R (2010) Application of the PSO-SVM model for recognition of control chart patterns. ISA Trans 49(4):577–586

    Article  Google Scholar 

  88. Lu CJ, Shao YE, Li, PH (2011) Mixture control chart patterns recognition using independent component analysis and support vector machine. Neurocomputing 74(11):1908–1914. ISSN 0925–2312. Adaptive Incremental Learning in Neural Networks Learning Algorithm and Mathematic Modelling Selected papers from the International Conference on Neural Information Processing 2009 (ICONIP 2009)

    Google Scholar 

  89. Lin SY, Guh RS, Shiue YR (2011) Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach. Comput Ind Eng 61(4):1123–1134

    Article  Google Scholar 

  90. Xanthopoulos P, Razzaghi T (2014) A weighted support vector machine method for control chart pattern recognition. Comput Ind Eng 70:134–149 ISSN 0360-8352

    Article  Google Scholar 

  91. Wang X (2008) Hybrid abnormal patterns recognition of control chart using support vector machining. In: 2008 international conference on computational intelligence and security, vol 2, pp 238–241

    Google Scholar 

  92. Ranaee V, Ebrahimzadeh A (2011) Control chart pattern recognition using a novel hybrid intelligent method. Appl Soft Comput 11(2):2676–2686. ISSN 1568-4946. The Impact of Soft Computing for the Progress of Artificial Intelligence

    Google Scholar 

  93. Zhou X, Jiang P, Wang X (2018) Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function. J Intell Manuf 29(1):51–67

    Article  Google Scholar 

  94. De la Torre Gutierrez H, Pham DT (2016) Estimation and generation of training patterns for control chart pattern recognition. Comput Ind Eng 95:72–82. ISSN 0360-8352

    Google Scholar 

  95. Chen LH, Wang TY (2004) Artificial neural networks to classify mean shifts from multivariate \(\chi \)2 chart signals. Comput Ind Eng 47(2–3):195–205

    Article  Google Scholar 

  96. Cheng CS, Cheng HP (2008) Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Syst Appl 35(1–2):198–206

    Article  Google Scholar 

  97. Guh RS, Shiue YR (2008) An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts. Comput Ind Eng 55(2):475–493

    Article  Google Scholar 

  98. Yu J, Xi L, Zhou X (2009) Identifying source (s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble. Eng Appl Artif Intell 22(1):141–152

    Article  Google Scholar 

  99. Alfaro E, Alfaro JL, Gamez M, Garcia N (2009) A boosting approach for understanding out-of-control signals in multivariate control charts. Int J Prod Res 47(24):6821–6834

    Article  Google Scholar 

  100. Verron S, Li J, Tiplica T (2010) Fault detection and isolation of faults in a multivariate process with Bayesian network. J Process Control 20(8):902–911

    Article  Google Scholar 

  101. He SG, He Z, Wang GA (2013) Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. J Intell Manuf 24(1):25–34

    Article  Google Scholar 

  102. Carletti M, Masiero C, Beghi A, Susto GA (2019) Explainable machine learning in industry 4.0: evaluating feature importance in anomaly detection to enable root cause analysis. In: 2019 IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 21–26

    Google Scholar 

  103. Song H, Xu Q, Yang H, Fang J (2017) Interpreting out-of-control signals using instance-based Bayesian classifier in multivariate statistical process control. Commun Stat-Simul Comput 46(1):53–77

    Article  MathSciNet  MATH  Google Scholar 

  104. Salehi M, Bahreininejad A, Nakhai I (2011) On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 74(12–13):2083–2095

    Article  Google Scholar 

  105. Zhao C, Sun H, Tian F (2019) Total variable decomposition based on sparse cointegration analysis for distributed monitoring of nonstationary industrial processes. IEEE Trans Control Syst Technol 28(4):1542–1549

    Article  Google Scholar 

  106. Chen Q, Kruger U, Leung AYT (2009) Cointegration testing method for monitoring nonstationary processes. Ind Eng Chem Res 48(7):3533–3543

    Article  Google Scholar 

  107. Ketelaere BD, Mertens K, Mathijs F, Diaz DS, Baerdemaeker JD (2011) Nonstationarity in statistical process control–issues, cases, ideas. Appl Stoch Model Bus Ind 27(4):367–376

    Article  Google Scholar 

  108. Liu J, Chen DS (2010) Nonstationary fault detection and diagnosis for multimode processes. AIChE J 56(1):207–219

    Article  Google Scholar 

  109. Lazariv T, Schmid W (2019) Surveillance of non-stationary processes. AStA Adv Stat Anal 103(3):305–331

    Article  MathSciNet  MATH  Google Scholar 

  110. Lazariv T, Schmid W (2018) Challenges in monitoring non-stationary time series. In: Frontiers in statistical quality control 12. Springer, pp 257–275

    Google Scholar 

  111. Qiu P (2020) Big data? Statistical process control can help! Am Stat 74(4):329–344

    Article  MathSciNet  Google Scholar 

  112. Tuv E, Runger G (2003) Learning patterns through artificial contrasts with application to process control. WIT Trans Inf Commun Technol 29. https://www.witpress.com/elibrary/wit-transactions-on-information-and-communication-technologies/29/1376

  113. Reis MS, Gins G (2017) Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis. Processes 5(3):35

    Article  Google Scholar 

  114. Capizzi G, Masarotto G (2011) A least angle regression control chart for multidimensional data. Technometrics 53(3):285–296

    Article  MathSciNet  Google Scholar 

  115. Megahed FM, Woodall WH, Camelio JA (2011) A review and perspective on control charting with image data. J Qual Technol 43(2):83–98

    Article  Google Scholar 

  116. Zuo L, He Z, Zhang M (2020) An EWMA and region growing based control chart for monitoring image data. Qual Technol Quant Manag 17(4):470–485

    Article  Google Scholar 

  117. Maragah HD, Woodall WH (1992) The effect of autocorrelation on the retrospective x-chart. J Stat Comput Simul 40(1–2):29–42

    Article  MATH  Google Scholar 

  118. Arkat J, Niaki STA, Abbasi B (2007) Artificial neural networks in applying MCUSUM residuals charts for AR (1) processes. Appl Math Comput 189(2):1889–1901

    MathSciNet  MATH  Google Scholar 

  119. Kim SB, Jitpitaklert W, Park SK, Hwang SJ (2012) Data mining model-based control charts for multivariate and autocorrelated processes. Expert Syst Appl 39(2):2073–2081

    Article  Google Scholar 

  120. Cuentas S, Peñabaena-Niebles R, Garcia E (2017) Support vector machine in statistical process monitoring: a methodological and analytical review. Int J Adv Manuf Technol 91(1):485–500

    Article  Google Scholar 

  121. Chinnam RB, Kumar VS (2001) Using support vector machines for recognizing shifts in correlated manufacturing processes. In: IJCNN 2001. International joint conference on neural networks. Proceedings (Cat. No. 01CH37222), vol 3. IEEE, pp 2276–2280

    Google Scholar 

  122. Hsu CC, Chen MC, Chen LS (2010) Integrating independent component analysis and support vector machine for multivariate process monitoring. Comput Ind Eng 59(1):145–156

    Article  Google Scholar 

  123. Hsu CC, Chen MC, Chen LS (2010) Intelligent ICA-SVM fault detector for non-gaussian multivariate process monitoring. Expert Syst Appl 37(4):3264–3273

    Article  Google Scholar 

  124. Tran KP, Nguyen HD, Thomassey S (2019) Anomaly detection using long short term memory networks and its applications in supply chain management. IFAC-PapersOnLine 52(13):2408–2412

    Article  Google Scholar 

  125. Nguyen HD, Tran KP, Thomassey S, Hamad M (2021) Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int J Inf Manag 57:102282

    Article  Google Scholar 

  126. Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206–215

    Article  Google Scholar 

  127. Wang K, Jiang W (2009) High-dimensional process monitoring and fault isolation via variable selection. J Qual Technol 41(3):247–258

    Article  Google Scholar 

  128. Jin Y, Huang S, Wang G, Deng H (2017) Diagnostic monitoring of high-dimensional networked systems via a LASSO-BN formulation. IISE Trans 49(9):874–884

    Article  Google Scholar 

  129. Qiu P (2017) Statistical process control charts as a tool for analyzing big data. In: Big and complex data analysis. Springer, pp 123–138

    Google Scholar 

  130. Sparks R, Chakraborti S (2017) Detecting changes in location using distribution-free control charts with big data. Qual Reliab Eng Int 33(8):2577–2595

    Article  Google Scholar 

  131. Megahed FM, Jones-Farmer LA (2015) Statistical perspectives on “big data”. In: Frontiers in statistical quality control 11. Springer, pp 29–47

    Google Scholar 

  132. Malaca P, Rocha LF, Gomes D, Silva J, Veiga G (2019) Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry. J Intell Manuf 30(1):351–361

    Article  Google Scholar 

  133. Woodall WH, Montgomery DC (2014) Some current directions in the theory and application of statistical process monitoring. J Qual Technol 46(1):78–94

    Article  Google Scholar 

  134. Bochinski E, Senst T, Sikora T (2017) Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 3924–3928

    Google Scholar 

  135. Trittenbach H, Böhm K, Assent I (2020) Active learning of SVDD hyperparameter values. In: 2020 IEEE 7th international conference on data science and advanced analytics (DSAA). IEEE, pp 109–117

    Google Scholar 

  136. Trinh VV, Tran KP, Huong TT (2017) Data driven hyperparameter optimization of one-class support vector machines for anomaly detection in wireless sensor networks. In: 2017 international conference on advanced technologies for communications (ATC). IEEE, pp 6–10

    Google Scholar 

  137. Wu J, Chen SP, Liu XY (2020) Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing 409:381–393

    Article  Google Scholar 

  138. Hosseini S, Zade BMH (2020) New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN. Comput Netw 173:107168

    Article  Google Scholar 

  139. Žliobaitė I, Pechenizkiy M, Gama J (2016) An overview of concept drift applications. In: Big data analysis: new algorithms for a new society, pp 91–114

    Google Scholar 

  140. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv (CSUR) 46(4):1–37

    Article  MATH  Google Scholar 

  141. Shmueli G, Fienberg SE (2006) Current and potential statistical methods for monitoring multiple data streams for biosurveillance. In: Statistical methods in counterterrorism. Springer, pp 109–140

    Google Scholar 

  142. Castanedo F (2013) A review of data fusion techniques. Sci World J 2013. https://www.hindawi.com/journals/tswj/2013/704504/

  143. Zhang M, Yuan Y, Wang R, Cheng W (2020) Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM. Pattern Anal Appl 23(1):15–26

    Article  MathSciNet  Google Scholar 

  144. Zhang M, Zhang X, Wang H, Xiong G, Cheng W (2020) Features fusion exaction and KELM with modified grey wolf optimizer for mixture control chart patterns recognition. IEEE Access 8:42469–42480

    Article  Google Scholar 

  145. Umeda Y, Kaneko J, Kikuchi H (2019) Topological data analysis and its application to time-series data analysis. Fujitsu Sci Tech J 55(2):65–71

    Google Scholar 

  146. Colosimo BM, Pacella M (2010) A comparison study of control charts for statistical monitoring of functional data. Int J Prod Res 48(6):1575–1601

    Article  MATH  Google Scholar 

  147. Liu J, Chen J, Wang D (2020) Wavelet functional principal component analysis for batch process monitoring. Chemom Intell Lab Syst 196:103897

    Article  Google Scholar 

  148. Flores M, Fernández-Casal R, Naya S, Zaragoza S, Raña P, Tarrío-Saavedra J (2020) Constructing a control chart using functional data. Mathematics 8(1):58

    Article  Google Scholar 

  149. Yu G, Zou C, Wang Z (2012) Outlier detection in functional observations with applications to profile monitoring. Technometrics 54(3):308–318

    Article  MathSciNet  Google Scholar 

  150. He Z, Zuo L, Zhang M, Megahed FM (2016) An image-based multivariate generalized likelihood ratio control chart for detecting and diagnosing multiple faults in manufactured products. Int J Prod Res 54(6):1771–1784

    Article  Google Scholar 

  151. He K, Zuo L, Zhang M, Alhwiti T, Megahed FM (2017) Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts. J Intell Manuf 28(4):899–911

    Article  Google Scholar 

  152. Stankus SE, Castillo-Villar KK (2019) An improved multivariate generalised likelihood ratio control chart for the monitoring of point clouds from 3D laser scanners. Int J Prod Res 57(8):2344–2355

    Article  Google Scholar 

  153. Okhrin Y, Schmid W, Semeniuk I (2019) Monitoring image processes: overview and comparison study. In: International workshop on intelligent statistical quality control. Springer, pp 143–163

    Google Scholar 

  154. Okhrin Y, Schmid W, Semeniuk I (2020) New approaches for monitoring image data. IEEE Trans Image Process 30:921–933

    Article  MathSciNet  Google Scholar 

  155. Yuan Y, Lin L (2020) Self-supervised pre-training of transformers for satellite image time series classification. IEEE J Sel Top Appl Earth Obs Remote Sens 14:474–487

    Article  Google Scholar 

  156. Tran PH, Heuchenne C, Thomassey S (2020) An anomaly detection approach based on the combination of LSTM autoencoder and isolation forest for multivariate time series data. In: Proceedings of the 14th international FLINS conference on robotics and artificial intelligence (FLINS 2020). World Scientific, pp 18–21

    Google Scholar 

  157. Sheather SJ, Marron JS (1990) Kernel quantile estimators. J Am Stat Assoc 85(410):410–416

    Article  MathSciNet  MATH  Google Scholar 

  158. Qiu H, Lee J, Lin J, Yu G (2006) Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vib 289(4–5):1066–1090

    Article  Google Scholar 

  159. Yu J, Zheng X, Wang S (2019) Stacked denoising autoencoder-based feature learning for out-of-control source recognition in multivariate manufacturing process. Q Reliab Eng Int 35(1):204–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Phuc Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, P.H., Ahmadi Nadi, A., Nguyen, T.H., Tran, K.D., Tran, K.P. (2022). Application of Machine Learning in Statistical Process Control Charts: A Survey and Perspective. In: Tran, K.P. (eds) Control Charts and Machine Learning for Anomaly Detection in Manufacturing. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-83819-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83819-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83818-8

  • Online ISBN: 978-3-030-83819-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics