Skip to main content

Hybrid Diagnostics Systems for Power Generators Faults: Systems Design Principle and Shaft Run-Out Sensors

  • Chapter
  • First Online:
Power Systems Research and Operation

Abstract

One of the ensuring stable and reliable electricity production problems is determine the technical condition of the means of generating electricity. This is necessary since more than 80% of the electricity in the Ukraine energy system is generate by powerful generators of nuclear power plants (NPP), thermal power plants(TPP), hydroelectric power plants (HPP) and pumped storage power plants (PSPP) with wear from 70 to 90%. One of the ways out of the situation it is the replacement of equipment on the new. This approach requires the attraction of significant monetary investments, which in the context of the global economic crisis is a rather difficult task. Another way is to use systems for diagnosing the actual technical state of powerful generators. The use of such systems will improve operational efficiency equipment to reduce the time and cost of maintenance and repairs, reduce the risk of accidents and failures by timely detection of defects in the machine during its operation, as well as make the right decisions to eliminate them and move from scheduled repairs to repairs on the actual condition of powerful generators.To assess the condition of generators as mechanical systems, diagnostic systems in addition to vibration sensors are use meters of mechanical parameters—the air gap between the stator and the rotor, the radial and axial beating of the shaft, mechanical forces in the tensioning prisms and others special sensors. Improving the metrological and technical characteristics of such meters will make better the control and diagnostic systems, and as a result—increase the reliability and durability of machines. So, this chapter presents:

  • Ukraine power generators current state;

  • design principle for developing hybrid fault control and diagnosis system for diagnostics mechanical faults in power generators;

  • capacitive shaft run-out sensors structures;

  • influence work magnetic field and temperature on capacitive shaft run-out sensor characteristics;

  • influence technological factors on capacitive shaft run-out sensor characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shevchenko, V.V.: A systematic approach to the assessment of the technical condition of electrical equipment of power systems of Ukraine. Electric. 1, 6–11 (2013) (Rus)

    Google Scholar 

  2. CAN Climate Action Network: https://infoclimate.org/budushhee-ukrainskoy-elektroenergetiki. Accessed 21 Mart 2021

  3. Energy of Ukraine (oil and gas sector/electricity): https://energybase.ru/country/ukraine#power-plant-tabs-widget-tab2(Rus). Accessed 21 Mar 2021

  4. Generation and consumption by energy of Ukraine (oil and gas sector/electricity): https://kosatka.media/category/elektroenergiya/analytics/generaciya-i-potreblenie-elektroenergii-v-yanvare-avguste-2020-goda. Accessed 21 Mar 2021

  5. Kensitsky, O.G., Klyuchnikov, A.A., Fedorenko, G.M.: Safety, reliability and efficiency of operation of electrical and electric power equipment of NPP units. Chernobil 240 (2009) (Rus)

    Google Scholar 

  6. Zozulin, Yu.V., Antonov, O.Y., Bichik, V.M., Borichevskiy, A.M., Kobzar, K.O., Livshits, O.L., Rakogon, V.G., Rogoviy, I.H., Khaimovich, L.L., Cherednik, V.I.: Development of new types and modernization of electric turbine generators for thermal power plants. Kharkiv 228 (2011) (Ukr)

    Google Scholar 

  7. Gruboi, O.P., Kobzar, K.O., Cheremisov, I.Ya., Khaimovich, L.L., Bogdanov, O.A., Gladkiy, V.V.: Creation of new types and ways of modernization of operating turbogenerators for thermal power plants, in Thermal Energy-New Challenges of Time, pp. 209–225. Lviv (2009) (Ukr)

    Google Scholar 

  8. Matsevity, Yu.M., Shulzhenko, N.G., Goloshchapov, V.V. et al.: Improving the energy efficiency of turbine plants at TPPs and CHPs through modernization, reconstruction and improvement of their operation modes, Matsevity, Yu. M. (ed.), p. 366. Kiev (2008) (Rus)

    Google Scholar 

  9. Subotin, V.G., Shevchenko, E.V., Shvetsov, V.L., et al.: Creation of new generation steam turbines with a capacity of 325 MW. Kharkiv 256 (2009) (Ukr)

    Google Scholar 

  10. Gruboy, O.P., Kuzmin, V.V., Cheremisov, I.Ya., Kobzar, K.O., Bogdanov, O.A.: Problems and prospects of development of turbogenerator construction in Ukraine. Hydropower Ukraine 2, 27–35 (2006) (Ukr)

    Google Scholar 

  11. Cherednik, V.I., Kobzar, K.A., Zozulin, Yu. V., Livshits, A.L., Rakogon, V.G., Rogovoy, I.H., Bychik, V.N., Borichevsky, A.M.: Modernization of the TGV turbogenerator -200M, in Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 24, pp. 43–49. Kiev (2009) (Ukr)

    Google Scholar 

  12. Ukrgidroenergo: https://uhe.gov.ua/media_tsentr/novyny/chomu-ges-i-gaes-neobkhidni-energetichniy-sistemi-kraini (Ukr). Accessed 21 Mar 2021

  13. Blinov, I., Zaitsev, Ie.O., Kuchanskyy, V.V.: Problems, methods and means of monitoring power losses in overhead transmission lines. In: Babak, V., Isaienko, V., Zaporozhets, A.(eds.) Systems, Decision and Control in Energy I, pp. 123–136. Springer (2020) https://doi.org/10.l007/978-3-030-48583-2_8

  14. Zaitsev, I.O., Kuchanskyy, V.V.: Corona discharge problem in extra high voltage transmission line. In: Zaporozhets, A., Artemchuk, V. (eds.) Systems, Decision and Control in Energy II, pp. 3–30. Springer (2021). https://doi.org/10.1007/978-3-030-69189-9_1

  15. Kuchanskyim, V., Zaitsev, I.: Corona discharge power losses measurement systems in extra high voltage transmissions lines, In: Proceedings of 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), pp. 48–53. Kyiv, Ukraine (2020). https://doi.org/10.1109/ESS50319.2020.9160088.

  16. Levytskyi, A.S., Zaitsev, I.O., Kobzar, K.O.: Measuring the stroke of cone disk springs in power accumulators of the turbogenerator stator core using a capacitive sensor. Devices Methods Meas. 9(2), 121–129 (2018). https://doi.org/10.21122/2220-9506-2018-9-2-121-129 (Index in Web Of Science)

  17. Zaitsev, I., Shpylka, A., Shpylka, N.: Output signal processing method for fiber bragg grating sensing system. In: Proceedings of the 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2020), pp. 152–155. Lviv-Slavske(Ukraine) (2020) https://doi.org/ https://doi.org/10.1109/TCSET49122.2020.235412

  18. Zaitsev, I.O., Levytskyi, A.S., Sydorchuk, V.E..: Air gap control system for hydrogenerators 8(2), 122–130 (2017). https://doi.org/10.21122/2220-9506-2017-8-2-122-130

  19. Braginets, I.A., Zaitsev, I.O.: Noise immunity of phase laser vibration sensors. Tekhnichna Elektrodynamika 3, 67-73 (2010)

    Google Scholar 

  20. Braginets, I.A., Zaitsev, I.O.: Dynamic characteristics of the phase laser vibration sensor. Tekhnichna Elektrodynamika 5, 75-79 (2010)

    Google Scholar 

  21. Braginets, I.A. and other: Laser vibration sensor based on the phase-frequency method for measuring distances. Tekhnichna Elektrodynamika 1, 66–70 (2011)

    Google Scholar 

  22. Braginets, I.A. and other: Phase-frequency laser displacement and vibration meters with optical calibration. Tekhnichna Elektrodynamika 6, 71–77 (2011)

    Google Scholar 

  23. Levitskyi, A.S., Zaitsev, L.O, Panchik, M. V.: Method for monitoring the stator core of a powerful turbo generator. ENERGETIKA. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 64(4), 303–313 (2021). https://doi.org/10.21122/1029-7448-2021-64-4-303-313

    Article  Google Scholar 

  24. Levytskyi, A.S., Zaitsev, L.O., Panchyk, M.V.: Assembly defects detection in the stator core of a powerful turbine generator. Visnyk Vinnytsia Politechnical Inst. 156(3), 47–53 (2021). https://doi.org/10.31649/1997-9266-2021-156-3-47-53

  25. Braginets, I.A., et al.: Increasing the noise immunity of the phase laser ranging systems. Tekhnichna elektrodynamika. 3, 91–96 (2014) (Rus)

    Google Scholar 

  26. Zaitsev, E.O.: A study of synthesizers for multi frequency phase range finder system with using LABVIEV. Tekhnichna elektrodynamika. 2, 84–88 (2014) (Rus)

    Google Scholar 

  27. Blinov, I., Parus, E.: Approach of reactive power pricing for ancillary service of voltage control in Ukraine. In: Proceedings of the 2014 IEEE International Conference Intelligent Energy and Power Systems (IEPS), 145 – 148 (2014)

    Google Scholar 

  28. Kyrylenko, O.V., Blinov, I., Parus, E.: Operation evaluation of power plants in the provision of ancillary services of primary and secondary frequency control in the Ukrainian power system. Techn. Electrodyn. 5, 55–60 (2013)

    Google Scholar 

  29. Latenko, V.I. and other: Digital converters metrological specification for resistant thermal thermosensors compare. Tekhnichna Elektrodynamika 1, 84–89 (2021) (Ukr). https://doi.org/10.15407/techned2021.01.084.

  30. Blinov, I.V., Parus, Y.V.: Approach of reactive power pricing for ancillary service of voltage control in Ukraine. In: Proceedings of IEEE International Conference on Intelligent Energy and Power Systems (IEPS-2014). https://doi.org/10.1109/IEPS.2014.6874167

  31. Braginets, I.A., Masyurenko, Y.A., et al.: Appling of compensatory measuring method of phase shift for laser range finder. Tekhnichna elektrodynamika. 3, 75–80 (2015) (Rus)

    Google Scholar 

  32. Bereznychenko V.O.: Definition of the shafts radial beating capacitive sensor response function by computer modeling. Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021(58), 107–112 (2021). https://doi.org/10.15407/publishing2021.58.107

  33. Senderovich, G.A., Zaporozhets, A.O., Gryb, O.G., Karpaliuk, I.T., Shvets, S.V., Samoilenko, I.A.: Experimental studies of the method for determining location of damage of overhead power lines in the operation mode. In: Sokol, Y.I., Zaporozhets, A.O. (eds.) Control of Overhead Power Lines With Unmanned Aerial Vehicles (UAVs), pp. 55–77. Springer (2021). https://doi.org/10.1007/978-3-030-69752-5_4

  34. STO 70238424.27.140.001–2011: Hydroelectric power plants methods for assessing the technical condition of the main equipment. Moscow (2011) (Rus)

    Google Scholar 

  35. Komshin, A.S.: Development of Scientific Foundations of Measuring and Computational Phase-Chronometric Technologies for Supporting the Life Cycle of Mechanical Engineering Objects. Moscow (2017) (Rus)

    Google Scholar 

  36. Dyakov, A.Y.: Control systems and automatic diagnostics of a hydraulic unit. Sayanogorsk, 83 (2017) (Rus)

    Google Scholar 

  37. Ivanchenko, I.P., Prokopenko, A.N.: Analysis of monitoring systems and diagnostics of the technical condition of hydraulic turbines 2(23), 24–30 (2011) (Rus)

    Google Scholar 

  38. Levytskyi, A.S., Zaitsev, I.O., Bereznychenko, V.O.: Features of measurement of radial beating of cylindrical surfaces of a shaft of the hydraulic unit. Hydropower Ukraine 1–2, 39 –44 (2019) (Ukr)

    Google Scholar 

  39. Levytskyi, A.S., Zaitsev, I.O., Bereznychenko, V.O.: Relative and absolute radial vibration of the shaft of the vertical unit. Hydropower Ukraine 3–4, 36–39 (2019) (Ukr)

    Google Scholar 

  40. Zaitsev, Ie.O., Levytskyi, A.S., Novik, A.I., Bereznychenko, V.O., Smyrnova, A.M.: Research of a capacitive distance sensor to grounded surface. Telecommun. Radio Eng. 78(2), 173–180 (2019). https://doi.org/10.1615/TelecomRadEng.v78.i2.80.

  41. Levytskyi, A.S., Zaitsev, I.O., Bereznychenko, V.O., Sukhorukova, O.E.: Measuring transducer for air gap capacitive sensor in hydrogenerator. Devices and methods of measurements. 11(1), 33–41 (2020) (Rus). https://doi.org/10.21122/2220-9506-2020-11-1-33-41

  42. Zaitsev, I., Panchyk, M.V.: Physical processes and their influence on the development of defects in the stator core of powerful generators. Sci. Educ. New Dimension Nat. Techn. Sci. (224), 81–84 (2020). https://doi.org/10.31174/SEND-NT2020-224VIII27-20.

  43. Zaitsev, I., Levytskyi, A., Kromplyas, B., Panchyk, M., Bereznychenko, V.: Study influence industrial frequency magnetic field on capacitive pressing sensor for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE Ukraine International Conference on Electrical and Computer Engineering (UKRCON-2019), , pp. 566–569, Lviv(Ukraine) 2–6 Jule 2019. https://doi.org/10.1109/UKRCON.2019.8879949

  44. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Capacitive distance sensor with coplanar electrodes for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), pp. 644–647. Kiev(Ukraine) 16–18 Apr 2019. https://doi.org/10.1109/ELNANO.2019.8783916

  45. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Hybrid capacitive sensor for hydro- and turbo generator monitoring system. In: Proceedings of the International conference on modern electrical and energy system (MEES-17) 15-17 Nov 2017, pp. 288–291. Kremenchuk(Ukraine) (2017). https://doi.org/10.1109/MEES.2017.8248913

  46. Zaitsev, I.O., Levytskyi, A.S.: Determination of response characteristic of capacitive coplanar air gap sensor. In: Proceedings of the 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS-2017), Aug 29–June 30 2017, pp. 85–88. Kyiv(Ukraine) (2017). https://doi.org/10.1109/MRRS.2017.8075034

  47. Shkolnik, V.E.: Measurement of the radial run-out of the cylindrical surfaces of the rotor shaft of electrical machines. Sci. Pap. “Electrosila". 40, 60–66 (2001) (Rus)

    Google Scholar 

  48. Zaitsev, L.O.: Analysis of sampling error on the accuracy of laser range finders based on the discrete hilbert transform. Tekhnichna elektrodynamika. 4, 89–94 (2015) (Rus)

    Google Scholar 

  49. Braginets, I.A., Sydorchuk, V.E., et al.: Analysis of phase system of automatic frequency correction in laser rangefinder. Tekhnichna elektrodynamika. 1, 91–94 (2015) (Rus)

    Google Scholar 

  50. Zaitsev, I.O.: Electric machines faults monitoring system with hybrid electro-optic capacitive mechanical sensors. In: Abstracts of the 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), 17–20 Oct 2017, pp. 15–18. Ukraine, Lviv (2017)

    Google Scholar 

  51. AD7745/46 24-Bit: Capacitance-to-Digital Converter with Temperature Sensor. https://www.analog.com/media/en/technical-documentation/data-sheets/AD7745_7746.pdf Accessed 21 Mar 2021

  52. Zaitsev, I.O., Levytskyi, A.S.: Hybrid electro-optic capacitive sensors for the fault diagnostic system of power hydrogenerator. In: Ebrahimi, A. (ed.) Clean Generators-Advances in Modeling of Hydro and Wind Generators, pp. 25–42. Intechopen (2020) https://doi.org/10.5772/intechopen.77988.

  53. Turan, J., Ovsenik, L., Turan, J.: Optically powered fiber optic sensors. Acta Electrotechnica et Informatica, 5–7 (2005)

    Google Scholar 

  54. Levytskyi A., Zaitsev I.: Hybrid fiber-optic measuring tools for control and diagnostic parameters of hydrogenerators. Hydropower Ukraine 3–4, 32–33 (2016) (Ukr)

    Google Scholar 

  55. Zadvornov, S.A.: Issledovaniye metodov postroyeniya gibridnykh volo-konno-optikoskikh izmeritel'nykh sistem. MPEI 119 (2009) (Rus)

    Google Scholar 

  56. Rosolem, J.B., Floridia, C., Sanz, J.: Optical system for hydrogenerator monitoring. In: Proceedings of the International Council for Power Electroenergetical Systems CIGRE 2010, pp. 1–8. France (Paris) (2010)

    Google Scholar 

  57. Riesen, S., Schubert, U., Bett, A.W.: GaAs photovoltaic cells for laser power beaming at high power densities. In: Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp. 182–185. Germany (2001)

    Google Scholar 

  58. Pena, R., Algora, C., Anton, I.: GaAs Multiple Photovoltaic Converters with an Efficiency of 45% for Monochromatic Illumination. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 228–231. Osaka (Japan) (2003)

    Google Scholar 

  59. Dakin, J., Brown, R.: Handbook of optoelectronics. Boca Raton, p 1563 (2006)

    Google Scholar 

  60. PV-Cells for Optical Power Transmission: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/infomaterial/brochures/photovoltaik/14e_ISE_Flyer_III-V_OpticalPowerTransmission.pdf Accessed 21 June 2019

  61. Herb, J.: Commercialization of new lattice-matched multi-junction solar cells based on dilute nitrides. Subcontract Report NREL/SR-5200–54721, p 28. San Jose(California) (2012)

    Google Scholar 

  62. Wang, M.R., Chen, R.T., Sone,k G.J., Jannson T.: Wavelength-division multiplexing and demultiplexing on locally sensitized single-mode polymer microstructure waveguides. Opt. Lett. 15(7), 363–365 (1990)

    Google Scholar 

  63. Haid, M., Armbruster, C., Derix, D., Schöner, C., Helmers, H.: 5 W Optical power link with generic voltage output and modulated data signal. In: Proceedings of the 1st Optical Wireless and Fiber Power Transmission Conference (OWPT2019), Yokohama (Japan) (2019)

    Google Scholar 

  64. Sunmee, P., Borton, D., Kang, M., Nurmikko, A., Song, Y.: An implantable neural sensing microsystem with fiber-optic data transmission and power delivery. Sensors 13, 6014–6031 (2013)

    Article  Google Scholar 

  65. Babak, S.V., Myslovich, M.V., Sysak, R.M.: Statistical diagnostics of electrical equipment, p 456. IED NANU, Kiev (2015) (Rus)

    Google Scholar 

  66. Zaitsev, I.O., Levytskyi, A.S., Sydorchuk, V.E.: Air gap control system for hydrogenerators. Devices Methods Meas. 8(2), 122–130 (2017) (Rus)

    Google Scholar 

  67. Bereznychenko, V.O., Zaitsev, I.O.: Contactless capacitive sensor of the system for monitoring the parameters of the beating of the powerful electrical machines shafts Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine 57, 81–88 (2021) (Ukr). https://doi.org/10.15407/publishing2020.57.081

  68. Knapp, B.R., Arneson, D.A., Martin, D.L.: Electrical runout using an eddy-current sensor for roundness measurements. In: Proceedings of the 28th ASPE (2013)

    Google Scholar 

  69. Smirnov, V.I.: Methods and means of functional diagnostics and control of technological processes based on electromagnetic sensors. Ulyanovsk State Technical University, p 190 (2001) (Rus)

    Google Scholar 

  70. Zaitsev, I., Levytskyi, A., Bereznychenko, V.: Development shaft run-out measurement transducers for powerful generators fault control system with capacitive coplanar concentric sensor. In: Proceedings of the 1st International Scientific and Practical Conference Theory and Practice of Science: Key Aspects, pp. 1014–2021. Rome (Italy) (2021). https://doi.org/10.51582/interconf.19-20.02.2021.103

  71. Levytskyi, A.S, Fedorenko, G.M., Gruboj, O.P.: Monitoring of the status of powerful hydro and turbo generators using capacitive meter for the parameters of mechanical defects. Kyiv, 242 (2011) (Ukr)

    Google Scholar 

  72. International Measurement Confederation (IMEKO) 209: www.imeko.org Accessed 21 Mar 2019

  73. Gorbova, G., Gorbov, M., Meyer, M.: Precise capacitance calculation of sensing elements capacitive sensors by method of direct field strength determination. In: Proceedings of the lEfct Sensor 2002, pp. 1239–1243. Orlando (2002)

    Google Scholar 

  74. Beloglazov, A.V. Glazyrin, G.V.: Development of monitoring tools for hydraulic unit shaft beats. Collect. Sci. Pap. NSTU. 3(53), 79–84 (2008) (Rus)

    Google Scholar 

  75. XY Measurements for Radial Position and Dynamic Motion in Hydro Turbine Generators. Orbit 30(1), 32–39 (2010)

    Google Scholar 

  76. Ungureanu, G., Covaciu, F., Balaj, A., Ciulbea, C.: Vibration monitoring system of hydroelectric turbine-generator sets. In: Proceedings 2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, Vol. 11, pp. 382–385. Clui-Napoca (Romania) (2002)

    Google Scholar 

  77. Milykh, V.I., Vysochin,A.I.: Principles of calculation of the magnetic field in the end of the turbo generator in various regimes of its work. Electrical engineering, Electrical engineering, Vol.3, pp.19–24 (Rus) (2010)

    Google Scholar 

  78. Milykh, V.I., Dubinina, O.N.: Numerical calculation of the magnetic field in the end zone of the turbogenerator under load conditions. Electr. Eng. Electr. Mech. 1, 64–69 (2003) (Rus)

    Google Scholar 

  79. Zaitsev, I., Levytskyi, A.S., Kromplyas, B.A., Panchyk, M.V., Bereznychenko V.O.: Study industrial frequency magnetic field influence on STM32F051K8T6 microcontroller functioning stability. In: Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 52, pp. 80–86 (2019) (Ukr). https://doi.org/10.15407/publishing2019.52.080

  80. Levytskyi, A.S., Zaitsev, I.O., Kromplyas, B.A.: Determination of the response characteristic of the capacitive sensor of the air gap in the hydrogenerator CГК538/160–70M. In: Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 43, pp. 134–136 (2016) (Ukr)

    Google Scholar 

  81. Levytskyi, A.S., Zaitsev, I.O., Kromplyas, B.A.: The errors of the capacitive measurer gap in the hydrogenator. In: Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine. Vol. 44, pp. 50–55 (2016) (Ukr)

    Google Scholar 

  82. Bao, M.H.: Electrostatic driving and capacitive sensing. In: Handbook of Sensors and Actuators, vol. 8, pp. 139–198 (2000)

    Google Scholar 

  83. Dzhezhora, A.A.: Electric capacitive converters and methods of their calculation. Belarusian Sci. 305 (2008) (Rus)

    Google Scholar 

  84. Evstigneev, V.V., Khomutov, O.I., Gorbova, G.M.: Prospective directions of design and principles of calculation of non-contact capacitive microdisplacement meters. Polzunovsky Almanac. 2, 45–58 (1999) (Rus)

    Google Scholar 

  85. IPC-2221B: Generic Standard on Printed Board Design, p. 207 (2012)

    Google Scholar 

  86. ANSI/IPC A-600H: Acceptability of Printed Boards, p.168 (2010)

    Google Scholar 

  87. Company SEA: https://www.sea.com.ua (Rus). Accessed 21 Mar 2021

  88. Company “PCB ETAL": https://pcbetal.com/ (Rus). Accessed 21 Mar 2021

  89. Company “SK-Techno": http://spcb.com.ua/ (Rus). Accessed 21 Mar 2021

  90. IPC-4101C: Specification for Base Materials for Rigid and Multilayer Printed Boards, p. 127 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ievgen Zaitsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaitsev, ., Levytskyi, A., Bereznychenko, . (2022). Hybrid Diagnostics Systems for Power Generators Faults: Systems Design Principle and Shaft Run-Out Sensors. In: Kyrylenko, O., Zharkin, A., Butkevych, O., Blinov, I., Zaitsev, I., Zaporozhets, A. (eds) Power Systems Research and Operation. Studies in Systems, Decision and Control, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-030-82926-1_4

Download citation

Publish with us

Policies and ethics