Skip to main content

Part of the book series: Springer Finance ((FINANCE))

  • 1191 Accesses

Abstract

In this chapter we introduce the concept of time inconsistency in dynamic choice problems. We start by reviewing the key ideas of dynamic programming and listing the main reasons for the time consistency in a given problem. We then present a number of seemingly simple examples from financial economics in which time consistency fails to hold. To tackle these (and similar problems), we outline the different approaches developed in the literature for handling time inconsistency in a dynamic stochastic control setting. In this book, we take the game-theoretic approach and look for subgame-perfect equilibrium strategies. Additionally, we emphasize that, similar to control problems, a stopping problem can be time inconsistent if it does not admit a Bellman optimality principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajeux-Besnainou, I., & Portait, R. (1998). Dynamic asset allocation in a mean-variance framework. Management Science, 44(11), 79–95.

    Article  Google Scholar 

  • Barro, R. (1999). Ramsey meets Laibson in the neoclassical growth model. The Quarterly Journal of Economics, 114, 1125–1152.

    Article  Google Scholar 

  • Basak, S., & Chabakauri, G. (2010). Dynamic mean-variance asset allocation. Review of Financial Studies, 23, 2970–3016.

    Article  Google Scholar 

  • Björk, T., & Murgoci, A. (2014). A theory of Markovian time-inconsistent stochastic control in discrete time. Finance and Stochastics, 18, 545–592.

    Article  MathSciNet  Google Scholar 

  • Björk, T., Murgoci, A., & Khapko, M. (2017). On time-inconsistent stochastic control in continuous time. Finance and Stochastics, 21, 331–360.

    Article  MathSciNet  Google Scholar 

  • Björk, T., Murgoci, A., & Zhou, X. Y. (2014). Mean-variance portfolio optimization with state-dependent risk aversion. Mathematical Finance, 24, 1–24.

    Article  MathSciNet  Google Scholar 

  • Czichowsky, C. (2013). Time-consistent mean-variance portfolio selection in discrete and continuous time. Finance and Stochastics, 17, 227–271.

    Article  MathSciNet  Google Scholar 

  • Dai, M., Jin, H., Kou, S., & Xu, Y. (2021). A dynamic mean-variance analysis for log returns. Management Science, 67(2), 1093–1108.

    Article  Google Scholar 

  • Djehiche, B., & Huang, M. (2016). A characterization of sub-game perfect equilibria for SDEs of mean-field type. Dynamic Games and Applications, 6, 55–81.

    Article  MathSciNet  Google Scholar 

  • Dong, Y., & Sircar, R. (2014). Time-inconsistent portfolio investment problems. In D. Crisan, B. Hambly, & T. Zariphopoulou (Eds.), Stochastic analysis and applications (pp. 239–281). Springer.

    Google Scholar 

  • Ekeland, I., & Lazrak, A. (2010). The golden rule when preferences are time inconsistent. Mathematics and Financial Economics, 4, 29–55.

    Article  MathSciNet  Google Scholar 

  • Ekeland, I., Mbodji, O., & Pirvu, T. (2010). Time-consistent portfolio management. SIAM Journal on Financial Mathematics, 3, 1–32.

    Article  MathSciNet  Google Scholar 

  • Ekeland, I., & Pirvu, T. (2008). Investment and consumption without commitment. Mathematics and Financial Economics, 2(1), 57–86.

    Article  MathSciNet  Google Scholar 

  • Goldman, S. (1980). Consistent plans. Review of Economic Studies, 47, 533–537.

    Article  Google Scholar 

  • Harris, C., & Laibson, D. (2001). Dynamic choices of hyperbolic consumers. Econometrica, 69(4), 935–957.

    Article  MathSciNet  Google Scholar 

  • Harris, C., & Laibson, D. (2013). Instantaneous gratification. The Quarterly Journal of Economics, 128(1), 205–248.

    Article  Google Scholar 

  • Hu, Y., Jin, H., & Zhou, X. (2012). Time-inconsistent stochastic linear-quadratic control. SIAM Journal on Control and Optimization, 50(3), 1548–1572.

    Article  MathSciNet  Google Scholar 

  • Kronborg, M. T., & Steffensen, M. (2015). Inconsistent investment and consumption problems. Applied Mathematics & Optimization, 71(3), 473–515.

    Article  MathSciNet  Google Scholar 

  • Krusell, P., & Smith, A. (2003). Consumption and savings decisions with quasi-geometric discounting. Econometrica, 71, 366–375.

    Article  Google Scholar 

  • Kryger, E., & Steffensen, M. (2010). Some solvable portfolio problems with quadratic and collective objectives. Working paper. Available at http://ssrn.com/abstract=1577265

  • Landriault, D., Li, B., Li, D., & Young, V. R. (2018). Equilibrium strategies for the mean-variance investment problem over a random horizon. SIAM Journal on Financial Mathematics, 9(3), 1046–1073.

    Article  MathSciNet  Google Scholar 

  • Li, D., & Ng, W. (2000). Optimal dynamic portfolio selection: Multi-period mean-variance formulation. Mathematical Finance, 10, 387–406.

    Article  MathSciNet  Google Scholar 

  • Li, D., Rong, X., & Zhao, H. (2015b). Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk. Insurance Mathematics and Economics, 64, 28–44.

    Article  MathSciNet  Google Scholar 

  • Lioui, A. (2013). Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences. Journal of Economic Dynamics and Control, 37(5), 1066–1096.

    Article  MathSciNet  Google Scholar 

  • Marín-Solano, J., & Navas, J. (2010). Consumption and portfolio rules for time-inconsistent investors. European Journal of Operational Research, 201(3), 860–872.

    Article  MathSciNet  Google Scholar 

  • Pedersen, J., & Peskir, G. (2016). Optimal mean-variance selling strategies. Mathematics and Financial Economics, 10, 203–220.

    Article  MathSciNet  Google Scholar 

  • Pedersen, J., & Peskir, G. (2017). Optimal mean-variance portfolio selection. Mathematics and Financial Economics, 11, 1–24.

    Article  MathSciNet  Google Scholar 

  • Peleg, B., & Yaari, M. E. (1973). On the existence of a consistent course of action when tastes are changing. Review of Economic Studies, 40, 391–401.

    Article  Google Scholar 

  • Pirvu, T., & Zhang, H. (2014). Investment-consumption with regime-switching discount rates. Mathematical Social Sciences, 71, 142–150.

    Article  MathSciNet  Google Scholar 

  • Pollak, R. (1968). Consistent planning. Review of Economic Studies, 35, 185–199.

    Article  Google Scholar 

  • Richardson, H. R. (1989). A minimum variance result in continuous trading portfolio optimization. Management Science, 35(9), 1045–1055.

    Article  MathSciNet  Google Scholar 

  • Strotz, R. (1955). Myopia and inconsistency in dynamic utility maximization. Review of Economic Studies, 23, 165–180.

    Article  Google Scholar 

  • van Staden, P. M., Dang, D.-M., & Forsyth, P. A. (2019). Mean-quadratic variation portfolio optimization: A desirable alternative to time-consistent mean-variance optimization? SIAM Journal on Financial Mathematics, 10(3), 815–856.

    Article  MathSciNet  Google Scholar 

  • van Staden, P. M., Dang, D.-M., & Forsyth, P. A. (2021). The surprising robustness of dynamic mean-variance portfolio optimization to model misspecification errors. European Journal of Operational Research, 289(2), 774–792.

    Article  MathSciNet  Google Scholar 

  • Vieille, N., & Weibull, J. (2009). Multiple solutions under quasi-exponential discounting. Economic Theory, 39, 513–526.

    Article  MathSciNet  Google Scholar 

  • Vigna, E. (2020). On time consistency for mean-variance portfolio selection. International Journal of Theoretical and Applied Finance, 23(06), 1–22.

    Article  MathSciNet  Google Scholar 

  • Wang, J., & Forsyth, P. A. (2012). Comparison of mean variance like strategies for optimal asset allocation problems. International Journal of Theoretical and Applied Finance, 15(02), Article 1250014.

    Google Scholar 

  • Zhou, X. Y., & Li, D. (2000). Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Applied Mathematics and Optimization, 42, 19–33.

    Article  MathSciNet  Google Scholar 

  • Zhou, Z., Ren, T., Xiao, H., & Liu, W. (2019). Time-consistent investment and reinsurance strategies for insurers under multi-period mean-variance formulation with generalized correlated returns. Journal of Management Science and Engineering, 4(2), 142–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Björk, T., Khapko, M., Murgoci, A. (2021). Introduction. In: Time-Inconsistent Control Theory with Finance Applications. Springer Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-81843-2_1

Download citation

Publish with us

Policies and ethics