Skip to main content

Hazards of Lunar Regolith for Respiratory, Central Nervous System, Cardiovascular and Ocular Function

Part of the Space and Society book series (SPSO)

Abstract

Lunar dust will arise as an issue for remediation in the earliest lunar settlements. The natural environment will pose risks that are becoming an important focus for research. Since Apollo 12 astronaut Alan Bean became accidentally exposed to lunar regolith in 1970, the toxic effects of Moon dust (<20 µm particle size diameter) and simulants have been extensively explored in models of animal and human cytology and pathophysiology. The absence of erosive mechanisms on the Moon such as wind and rain which are present on Earth maintain the sharp and abrasive physiochemical properties of lunar dust which can infiltrate lung tissue. Moreover, the particle size distribution and elemental composition may induce ocular and skin irritation and stimulate an allergenic cascade which may lead to cardiovascular and central nervous system inflammation. A permissible exposure limit has been established for acute exposure. Chronic exposure limits need to be established prior to life-support system mitigation of any effects of regolith on astronaut hygiene after introduction into the habitat.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bean, A., Conrad Jr., C., & Gordon, R. F. (1970). Crew Observations in Apollo 12 Preliminary Science Report, NASA SP-235; 29–38.

    Google Scholar 

  • Bender, B. (2020). NASA gets a budget but Congress cuts moon effort. Retrieved December 23, 2020, from https://www.politico.com/newsletters/politico-space.

  • Borisova, T. (2019). Express assessment of neurotoxicity of particles of planetary and interstellar dust. Npj Micorgravity, 5, 2. https://doi.org/10.1038/s41526-019-0062-7

    CrossRef  ADS  Google Scholar 

  • Britton, J., & Hubbard, R. (2000). Recent advances in the aetiology of cryptogenic fibrosing alveolitis. Histopathology, 37, 387–392.

    CrossRef  Google Scholar 

  • Cain, J. R. (2010). Lunar dust: The hazard and exposure risks. Earth, Moon, and Planets, 107, 107–125.

    CrossRef  ADS  Google Scholar 

  • Cain, J. R. (2011). Astronautical hygiene—A new discipline to protect the health of astronauts working in space. JBIS, 64, 179–185.

    ADS  Google Scholar 

  • Cain, J. R. (2014). Astronaut health—Planetary exploration and the limitations on freedom. In: C. S. Cockell (Ed.), The meaning of liberty beyond Earth. New York: Springer.

    Google Scholar 

  • Cain, J. R. (2018). The use of exposomes to assess astronaut health. JBIS, 71, 112–116.

    ADS  Google Scholar 

  • Calle, C. I., Mackey, P. J., Hogue, M. D., Johansen, M. R., Yim, H., Delaune, P. B., & Clements, J. S. (2013). Electrodynamic dust shields on the International Space Station: Exposure to the space environment. Journal of Electrostatics, 71, 257–259.

    CrossRef  Google Scholar 

  • Caston, R., Luc, K., Hendrix, D., Hurowitz, J. A., & Demple, B. (2018). Assessing toxicity and nuclear and mitochondrial DNA damage caused by exposure of mammalian cells to lunar regolith simulants. GeoHealth, 2, 139–148.

    CrossRef  Google Scholar 

  • Cloutis, E., Rosca, J. D., Hoa, S. V., Ellery, A., Martel, S., & Jiang, X. X. (2012). Project MoonDust: Characterisation and mitigation of lunar dust. Am. Inst. Aeronaut. Astronaut. https://doi.org/10.2514/6.2011-5184.

  • Creed, R. (2017). Coping with dust for extraterrestrial exploration. Lunar Exploration Analysis Group (LPI Contrib. No. 2041).

    Google Scholar 

  • Curtis, S. A., Clark, P. E., Minetto, F. A., Calle, C. J., Keller, J., & Moore, M. (2009). SPARCLE: creating an electrostatically based tool for lunar dust control. In 40th Lunar and Planetary Science Conference, abstract 1128.

    Google Scholar 

  • ESA. (2015). Testing astronauts’ lungs in Space Station airlock. Retrieved October 11, 2020, from, http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Futura/Testing_astronauts_lungs_in_Space_Station_airlock.

  • Farr, B., Wang, X., Goree, J., Hahn, I., Israelsson, U., & Horanyi, M. (2020). Dust mitigation technology for lunar exploration utilizing an electron beam. Acta Astronautica, 177, 405–409.

    CrossRef  ADS  Google Scholar 

  • Gaier, J. R. (2005). The effects of lunar dust on EVA systems during the Apollo missions. NASA/TM—2005-213610 Glenn Research Centre, Cleveland.

    Google Scholar 

  • Gaier J. R., & Greel, R. A. (2005). The effects of lunar dust in advanced EVA systems: Lessons from Apollo. Lunar regolith simulant materials workshop, NASA MF 21.

    Google Scholar 

  • Gaier, J. R., Waters, D. L., Misconin, R. M., Banks, B. A., Crowder, M. (2011). Evaluation of surface modification as a lunar dust mitigation strategy for thermal control surfaces. In NASA/TM 2011-217230, 41st International Conference on Environmental Systems.

    Google Scholar 

  • Gaier, J. R., Vangen, S., Abel, P., Agui, J., Buffington, J., Calle, C., Mary, N., et al. (2017). International space exploration coordination group assessment of technology gaps for dust mitigation for the global exploration roadmap. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170001575.pdf.

  • Graf, J. C. (1993). Lunar soil size catalog. NASA RP-1265.

    Google Scholar 

  • Greenberg, P. S., Chen, D.-R., & Smith, S.A. (2007). Aerosol measurements of the fine and ultrafine particle content of lunar regolith. NASA Technical Reports Server available at https://ntrs.nasa.gov/archve/nasa/casi.ntrs.nasa.gov/20070.

  • Horie, M., Miki, T., Honma, Y., Aoki, S., & Morimoto, Y. (2015). Evaluation of cellular effects caused by lunar regolith simulant including fine particle. Journal of UOEH, 37, 139–148.

    CrossRef  Google Scholar 

  • Hyatt, M. J., & Feighery, J. (2007). Lunar dust: Characterisation and mitigation. NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080005580.pdf.

  • Hyatt, M. J., & Deluane, P. (2008). Lunar dust mitigation—Technology development. Space Technology and Applications International Forum. NASA.

    Google Scholar 

  • International Agency Working Group. (2016). Dust mitigation gap assessment report. Retrieved October 8, 2020, from https://www.globalspaceexploration.org/wordpress/docs/Dust%20Mitigation%20Gap%20Assessment%20Report.pdf.

  • James, J. T., Lam, C.-W., Santana, P. A., & Scully, R. R. (2013a). Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modelling. Inhalation Toxicology, 25, 243–256.

    CrossRef  Google Scholar 

  • James, J. T., Lam, C., & Scully, R. R. (2013b). Comparative benchmark dose modelling as a tool to make the first estimate of safe human exposure levels to lunar dust. NASA Technical Reports Server, 20130012803. Retrieved December 24, 2020, from https://archive.org/details/NASA_NTRS_Archive_20130012803.

  • James, J. T., Lam, C.-W., Scully, R. R., Meyers, V. E., & McCoy, J. T. (2014). Lunar dust toxicity: final report. NASA. humanresearchroadmap.nasa.gov/gaps/closureDocumentation/Lunar%20Dust%20Toxicity%20FINAL%20REPORT.pdf.

    Google Scholar 

  • Karlsson, L. L., Kerckx, Y., Gustafsson, L. E., Hemmingsson, T. E., & Linnarsson, D. (2009). Microgravity decreases and hypergravity increases exhaled nitric oxide. Journal of Applied Physiology, 107, 1431–1437.

    CrossRef  Google Scholar 

  • Khan-Mayberry, N., James, J. T., Tyl, R., & Lam, C. W. (2011). Space toxicology: Protecting human health during space operations. International Journal of Toxicology, 30, 3–18.

    CrossRef  Google Scholar 

  • Krisanova, N., Kasatkina, L., Sivko, R., Borysov, A., Nazarova, A., Slenzka, K., & Borisova, T. (2013). Neurotoxic potential of Lunar and Martian dust: Influence on Em, proton gradient, active transport and binding of glutamate in rat brain nerve terminals. Astrobiology, 13, 679–692.

    CrossRef  ADS  Google Scholar 

  • Kruzelecky, R. V., Brahim, A., Wong, B., Haddad, E., Jamroz, W., Cloutis, E., Therriault, D., et al. (2012). Project MoonDust: characterisation and mitigation of lunar dust. In 41st International Conference on Environmental Systems, 2011, Portland, Oregon. https://doi.org/10.2514/6.2011-5184.

  • Lam, C.-W., Scully, R. R., Zhang, Y., Renne, R. R., Hunter, R. L., McCluskey, R. A., Chen, B. T., Castranova, V., Driscoli, K. E., Gardner, D. E., McClennan, R. O., Cooper, B. L., McKay, D. S., Marshall, L., & James, J. T. (2013). Toxicity of lunar dust assessed in inhalation-exposed rats. Inhalation Toxicology, 25, 661–678.

    CrossRef  Google Scholar 

  • Latch, J. N., Hamilton, R. F., Jr., Holian, A., James, J. T., & Lam, C.-W. (2007). Toxicity of lunar and Martian dust simulants to alveolar macrophages isolated from human volunteers. Inhalation Toxicology, 20, 157–165.

    CrossRef  Google Scholar 

  • Linnarsson, D., Carpenter, J., Fubini, B., Gerde, P., Karlsson, L. L., Loftus, D. J., Prisk, G. K., Tranfield, E. M., & van Westrened, W. (2012). Toxicity of lunar dust. Planetary & Space Science, 74, 57–71.

    CrossRef  ADS  Google Scholar 

  • Liu, Y., & Taylor, L. A. (2008). Lunar dust: Chemistry and physical properties and implications for toxicity. In NLSI Lunar Science Conference 2072.

    Google Scholar 

  • Loftus, D. J., Tranfield, E. M., Rask, J. C., & McCrossin, C. (2010). The chemical reactivity of lunar dust relevant to human exploration of the Moon. Earth, Moon, and Planets, 107, 95–105.

    CrossRef  ADS  Google Scholar 

  • Lu, Y., Jiang, J., Yan, X., & Wang, L. (2019). A new photovoltaic lunar dust removal technique based on the coplanar bipolar electrodes. Smart Materials and Structures, 28,. https://doi.org/10.1088/1361-665X/ab28da

  • Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., Mann, D. M. A., Torres-Jardon, R., & Calderon-Garciduenas, L. (2016). Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 113, 10797–10801.

    CrossRef  ADS  Google Scholar 

  • Manyapu, K. K. (2017). Spacesuit integrated carbon nanotube dust mitigation system for Lunar exploration. Theses and Dissertations 2278. https://commons.und.edu/theses/2278.

  • McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R. French, B., & Papike, J. (1991). The lunar regolith. In G. Heiken, D. Vaniman, & B. French (Eds.), Lunar sourcebook. Cambridge University Press.

    Google Scholar 

  • McKay, D. S., Cooper, B. L., Taylor, L. A., James, J. T., Thomas-Keprta, K., Pieters, C. M., Wentworth, S. J., Wallace, W. T., & Lee, T. S. (2015). Physicochemical properties of respirable-size lunar dust. Acta Astronautica, 107, 163–176.

    CrossRef  ADS  Google Scholar 

  • Meyers, V. E., Garcia, H. D., Monds, K., Cooper, B. L., & James, J. T. (2012). Ocular toxicity of authentic lunar dust. BMC Opthalmology, 12, 26.

    CrossRef  Google Scholar 

  • NASA GeneLab. (2020). Retrieved December 24, 2020, from https://genelab.nasa.gov/.

  • NASA. (2005). Lunar Airborne Dust Toxicity Advisory Group (LADTAG). Consensus opinions and recommendations. Retrieved October 8, 2020, from https://www.nasa.gov/centers/johnson/pdf/486003main_LADTAG15Sep05MtgMinutes.pdf.

  • NASA. (2016). International Space Exploration Coordination Group Assessment of Technology Gaps for Dust Mitigation for the Global Exploration Roadmap. Retrieved October 8, 2020, from https://ntrs.nasa.gov/citations/20170003926.

  • NASA. (2019). Understanding asthma from space. Retrieved October 11, 2020, from https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/hh-understanding-asthma-from-space.

  • NASA. (2020). The 2021 Big idea challenge: Dust mitigation technologies for lunar applications. Retrieved October 11, 2020, from http://bigidea.nianet.org/.

  • NICE. (2014). Measuring fractional exhaled nitric oxide concentration in asthma: NIOX MINO, NIOX VERO and NObreath. Retrieved October 11, 2020, from https://www.nice.org.uk/guidance/dg12/resources/measuring-fractional-exhaled-nitric-oxide-concentration-in-asthma-niox-mino-niox-vero-and-nobreath-pdf-1053626430661.

  • Oberdörster, G., Elder, A., & Rinderknecht, A. (2009). Nanoparticles and the brain: Cause for concern? Journal of Nanoscience and Nanotechnology, 9, 4996–5007.

    CrossRef  Google Scholar 

  • Park, Y., Liu, K., Kihm, D., & Taylor, L. A. (2006). Micro-morphology and toxicological effects of lunar dust. In 37th Annual Lunar and Planetary Science Conference, abstract 2193.

    Google Scholar 

  • Park, J., Liu, Y., Kihm, K. D., & Taylor, L. A. (2008). Characterisation of lunar dust for toxicological studies. I: Particle size distribution. Journal of Aerospace Engineering, 21, 266–271.

    CrossRef  Google Scholar 

  • Phillips, T. (2006). Apollo chronicles: the mysterious smell of moondust. NASA. Retrieved October 5, 2020, from https://www.nasa.gov/exploration/home/30jan_smellofmoondust.html.

  • Prisk, G. K. (2018). Effects of partial gravity on the function and particle handling of the human lung. Current Pathobiology Reports, 6, 159–166.

    CrossRef  Google Scholar 

  • Rask, J., (2013). The chemical reactivity of lunar dust influences its biological effect in the lungs. In Lunar and Planetary Science Conference, p. 3062.

    Google Scholar 

  • Reynolds, R.J (2019). Human health in the lunar environment. In Y. H. Chemin (Ed.), Lunar science. https://doi.org/10.5772/intechopen.84352.

  • Schultz, I. R., Cade, S., & Kuo, L. J. (2019). The dust exposome. In S. Dagnino & A. Macherone (Eds.), Unraveling the exposome—A practical view (pp. 247–254). Springer Publishers.

    Google Scholar 

  • Scully, R. R., Lam, C. W., & James, J. T. (2013). Estimating safe exposure levels for lunar dust using benchmark dose modelling of data from inhalation studies in rats. Inhalation Toxicology, 25, 785–793.

    CrossRef  Google Scholar 

  • Space Station Research Explorer. (2020). Retrieved December 24, 2020, from https://www.nasa.gov/mission_pages/station/research/experiments/explorer/.

  • Stubbs, T. J., Vondrak, R. R., & Farrell, W. M. (2007). Impact of dust on lunar exploration. Goddard Spaceflight Center. http://helf.jsc.nasa.gov/files/StubbsImpactOn Exploration.4075.pdf.

    Google Scholar 

  • Suescan-Florez, E., Roslyakov, S., Iskander, M., & Baamer, M. (2015). Geotechnical properties of BP-1 lunar regolith simulant. Journal of Aerospace Engineering, 28,. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000462

  • Sun, Y., Liu, J.-G., Zheng, Y.-C., Xiao, C.-L., Wan, B., Guo, L., Wang, X.-G., & Bo, W. (2018a). Research on rat’s pulmonary acute injury induced by lunar soil simulant. Journal of Chinese Medical Association, 81, 133–140.

    CrossRef  Google Scholar 

  • Sun, Y., Liu, J. G., Kong, Y. D., Sen, H. J., & Ping, Z. X. (2018b). Effects of lunar soil simulant on systemic oxidative stress and immune response in acute rat lung injury. International Journal of Pharmacology, 14, 766–772.

    CrossRef  Google Scholar 

  • Sun, Y., Zhang, L., Liu, J., Zhang, X., Su, Y., Yin, Q., & He, S. (2019). Effects of lunar dust simulant on cardiac function and fibrosis in rat. Toxicology Research, 8, 499–508.

    CrossRef  Google Scholar 

  • Tang, H., Li, X., Zhang, S., Wang, S., Liu, J., Li, S., Li, Y., & Lv, Z. J. (2016). A lunar dust simulant: CLDS-I. Advances in Space Research, 59, 1156–1160.

    CrossRef  ADS  Google Scholar 

  • Taylor, L. A. (2000). The lunar dust problem: A possible remedy. In Proceedings of Space Resources Roundtable II (p. 71).

    Google Scholar 

  • Taylor, L. A. Schmitt, H. H., Carrier III, W. D., & Nakagawa, M. (2005). The lunar dust problem: from liability to asset. In 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, United States (pp. 71–78).

    Google Scholar 

  • Tranfield, E., Rask, J. C., Wallace, W. T., Taylor, L., Kerschmann, R., James, J.T., Khan-Mayberry, N., & Loftus, D. J. (2008). Lunar airborne toxicity advisory group (LADTAG) research working group (RWG). In NLSI Lunar Science Conference, abstract 2125.

    Google Scholar 

  • United States Department of Labor, Occupational Safety and Health Administration. (2020). OSHA Occupational Chemical Database. Silica, fused, respirable dust. Retrieved December 24, 2020, from https://www.ohsa.gov/chemicaldata/chemResult.html?recNo=442.

  • Wadsworth, S. J., Sin, D. D., Dorscheid, D., & R, . (2011). Clinical update on the use of biomarkers of airway inflammation in the management of asthma. Journal of Asthma and Allergy, 4, 77–86.

    CrossRef  Google Scholar 

  • Wagner, S. A. (2006). The Apollo experience lessons learned for constellation dust management. NASA/TP-2006-213726.

    Google Scholar 

  • Zheng, Y., Wang, S., Ziyuan, O., Yongliao, Z., Jianzhong, L., Xiongyao, L., & Junming, F. (2009). CAS-1 lunar soil simulant. Advances in Space Research, 43, 448–454.

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braddock, M. (2021). Hazards of Lunar Regolith for Respiratory, Central Nervous System, Cardiovascular and Ocular Function. In: Rappaport, M.B., Szocik, K. (eds) The Human Factor in the Settlement of the Moon. Space and Society. Springer, Cham. https://doi.org/10.1007/978-3-030-81388-8_9

Download citation