Skip to main content

Understanding and Managing the Hazards and Opportunities of Lunar Regolith in Greenhouse Agriculture

  • 655 Accesses

Part of the Space and Society book series (SPSO)

Abstract

Lunar settlements will include industrial agriculture, so an artificial agricultural environment will be part of the landscape and work space for early settlements. Provision of capacity and development of new capabilities will pose both opportunities and risks for engineers, scientists and project managers. Lunar regolith is the layer of particles on the surface of the Moon which has been generated by micro-meteorite impact and resembles volcanic ash. The finest particles are less than 100 µm particle size diameter and are generally referred to as dust. Particle sizes are as small as 0.01 µm and show an abundance of agglutinate glasses and metallic iron and the low electrical conductance allows grain to retain electrostatic charge. Lunar regolith appears to contain all essential minerals to support agriculture. Using lunar soil simulants, studies have shown that it is possible to grow certain plants for up to 50 days without addition of nutrient and to sow seeds to permit germination and crop harvest by the addition of organic matter.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems–a review. Scientia Horticulturae, 212, 220–234.

    CrossRef  Google Scholar 

  • Battler, M., Richard, J., Boucher, D., & Spray, J. (2006). Developing an anorthositic lunar regolith simulant. In 37th Annual Lunar and Planetary Science Conference, abstract 1622.

    Google Scholar 

  • Baur, P. S., Clark, R. S., Walkinshaw, C. H., & Scholes, V. E. (1974). Uptake and translocation of elements from Apollo 11 lunar material by lettuce seedlings. Phyton, 32, 133–142.

    Google Scholar 

  • Blanco-Canqui, H., Lal, R., Post, W. M., Izaurralde, R. C., & Shipitalo, M. J. (2006). Organic carbon influences on soil particle density and rheological properties. Soil Science Society of America Journal, 70, 1407–1414.

    CrossRef  ADS  Google Scholar 

  • Borer, B., Jimenez-Martinez, J., Stocker, R., & Or, D. (2020). Reduced gravity promotes bacterially mediated anoxic hotspots in unsaturated porous media. Scientific Reports, 10, 8614.

    CrossRef  ADS  Google Scholar 

  • Cain, J. R. (2016). Humans in space and chemical risks to health. Spaceflight, 58, 336–341.

    Google Scholar 

  • Cain, J. R. (2018). Mars colonisation: The hazards and exposure control. Journal of the British Interplanetary Society, 71, 178–185.

    Google Scholar 

  • Cain, J. R. (2020). Astronaut eye exposure to microgravity, to radiation and to lighting. Journal of the British Interplanetary Society, 73, 390–396.

    Google Scholar 

  • Carrier, W. D., III., Olhoeft, G. R., & Mendell, W. (1991). Physical properties of the lunar surface. In G. Heiken, D. Vaniman, & B. M. French (Eds.), Lunar Sourcebook (pp. 475–594). Cambridge University Press.

    Google Scholar 

  • Cooper, M., Douglas, D., & Perchonok, M. (2011). Developing the NASA food system for long-duration missions. Journal of Food Science, 76, R40–R48.

    CrossRef  Google Scholar 

  • Donahue, R. L., Miller, R. W., & Shickluna, J. C. (1977). Soils: An introduction to soils and plant growth. Prentice-Hall. ISBN 978–0–13–821918–5.

    Google Scholar 

  • Dubinskii, A. Y., & Popel, S. I. (2019). Water formation in the lunar regolith. Cosmic Research, 57, 79–94.

    CrossRef  ADS  Google Scholar 

  • Ehrlich, J. W., Massa, G., Wheeler, R., Gill, T. R., Quincy, C., Roberson, L., Binsted, K., & Morrow, R. (2017). Plant growth optimization by vegetable production system in HI-SEAS analog habitat. AIAA Space and astronautics forum and exposition (p. 5143).

    Google Scholar 

  • Eichler, A., Hadland, N., Pickett, D., Masaitis, D., Handy, D., Perez, A., Batcheldor, D., Wheeler, B., & Palmer, A. (2020). Challenging the agricultural viability of Martian regolith simulants. Icarus, 114022.

    Google Scholar 

  • Engelschiøn, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10, 5473.

    CrossRef  ADS  Google Scholar 

  • Ferl, R., Wheeler, R., Levine, H. G., & Paul, A. L. (2002). Plants in space. Current Opinion in Plant Biology, 5, 258–263.

    CrossRef  Google Scholar 

  • Ferl, R. J., & Paul, A.-L. (2010). Lunar plant biology–a review of the Apollo era. Astrobiology, 10, 261–274.

    CrossRef  ADS  Google Scholar 

  • Fu, Y., Li, L., Xie, B., Dong, C., Wang, M., Jia, B., Shao, L., Dong, Y., Liu, H., Liu, G., Liu, B., Hu, D., & Liu, H. (2016). How to establish a bioregenerative life support system for long-term crewed missions to the moon or mars. Astrobiology, 16, 925–936.

    CrossRef  ADS  Google Scholar 

  • Gericke, W. F. (1938). Crop production without soil. Nature, 141, 536–540.

    CrossRef  ADS  Google Scholar 

  • Heiken, G. H., Vaniman, D. T., French, B. M., et al. (Eds.). (1991). The lunar sourcebook: A user’s guide to the moon. Cambridge University Press.

    Google Scholar 

  • Hill, E., Mellin, M. J., Deane, B., Liu, Y., & Taylor, L. A. (2007). Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration. Journal of Geophysical Research, 112, E02006.

    ADS  Google Scholar 

  • Hirai, H., & Kitaya, Y. (2009). Effects of gravity on transpiration of plant leaves. Annals of the New York Academy of Sciences, 1161, 166–172.

    CrossRef  ADS  Google Scholar 

  • Honniball, C. I., Lucey, P. G., Li, S., et al. (2020). Molecular water detected on the sunlit moon by SOFIA. Nature Astronomy. https://doi.org/10.1038/s41550-020-01222-x

    CrossRef  Google Scholar 

  • Houston, W. N., Mitchell, J. K., & Carrier, W. D. III. (1974). Lunar soil density and porosity. In Proceedings of the 5th Lunar and planetary science conference (pp. 2361–2364).

    Google Scholar 

  • Hu, E., Bartsev, S. I., & Liu, H. (2010). Conceptual design of a bioregenerative life support system containing crops and silkworms. Advances in Space Research, 45, 929–939.

    CrossRef  ADS  Google Scholar 

  • Hui, H., Peslier, A. H., Zhang, Y., & Neal, C. R. (2013). Water in lunar anorthosites and evidence for a wet early moon. Nature Geoscience, 6, 177–180.

    CrossRef  ADS  Google Scholar 

  • Hyatt, M. J., & Feighery, J. (2007). Lunar dust: Characterisation and mitigation. NASA, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080005580.pdf

  • Jones, A. (2019). China grew two cotton leaves on the moon. Spectrum. ieee.org/tech-talk/aerospace/robotic-exploration/china-grew-these-leaves-on-the-moon.

    Google Scholar 

  • Jost, A.-I. K., Takayuki, H., & Iversen, T. H. (2015). The utilization of plant facilities on the international space station—the composition, growth, and development of plant cell walls under microgravity conditions. Plants, 4, 44–62.

    CrossRef  Google Scholar 

  • Kiss, J. Z. (2014). Plant biology in reduced gravity on the moon and mars. Plant Biology, 16, 12–17.

    CrossRef  Google Scholar 

  • Korotev, R. L. (2020). The chemical composition of lunar soil. sites.wustl.edu/meteoritesite/items/the-chemical-composition-of-lunar-soil/

    Google Scholar 

  • Kozyrovska, N. O., Korniichuk, O. S., Voznyuk, T. M., Kovalchuk, M. V., Lytvynenko, T. L., Rogutsky, I. S., Mytrokhyn, O. V., Estrella-Liopis, V. R., Borodinova, T. L., Mashkovska, S. P., Foing, B. H., & Kordyum, V. A. (2004). Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse. Space Science Technology, 10, 221–225.

    Google Scholar 

  • Kozyrovska, N. O., Lytvynenko, T. L., Korniichuk, O. S., Kovalchuk, M. V., Voznyuk, T. M., Kononuchenko, O., Zaetz, I., Rogutsky, I. S., Mytrokhyn, O. V., Mashkovska, S. P., Foing, B. H., & Kordyum, V. A. (2006). Growing pioneer plants for a lunar base. Advances in Space Research, 37, 93–99.

    CrossRef  ADS  Google Scholar 

  • Kruzelecky, R. V., Brahim, A., Wong, B., Haddad, E., Jamroz, W., Cloutis, E., Therriault, D., Ellery, A., Martel, S., & Jiang, X. X. (2012). Project moondust: Characterisation and mitigation of lunar dust. In 41st International conference on environmental systems. 2011. https://doi.org/10.2514/6.2011-5184

  • Li, Y., Liu, J., & Yue, Z. (2009). NAO-1: Lunar highland soil simulant developed in China. Journal of Aerospace Engineering, 22, 53–57.

    CrossRef  Google Scholar 

  • Lytvynenko, T., Zaetz, I., Voznyuk, T., Kovalchuk, M., Rogutskyy, I., Mytrokhyn, O., Lukashov, D., Estrella-Liopis, V., Borodinova, T., Mashkovsha, S., Foing, B., Kordyum, V., & Kozyrovska, N. (2006). A rationally assembled microbial community for growing Tagetes patula L. in a lunar greenhouse. Research in Microbiology, 157, 87–92.

    CrossRef  Google Scholar 

  • Maggi, F., & Pallud, C. (2010). Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on earth, mars, the moon and the space station. Planetary and Space Science, 58, 1996–2007.

    CrossRef  ADS  Google Scholar 

  • Maggi, F., & Pallud, C. (2010). Martian base agriculture: The effect of low gravity on water flow, nutrient cycles and microbial biomass dynamic. Advances in Space Research, 46, 1257–1265.

    CrossRef  ADS  Google Scholar 

  • Maimwald, V., Vrakking, V., Zabel, P., Schubert, D., Waclavicek, R., Dorn, M., Flore, L., Imhof, B., Rousek, T., Rossetti, V., & Zeidler, C. (2020). From ice to space: A greenhouse design for moon or mars based on a protype deployed in Antarctica. CEAS Space Journal. https://doi.org/10.1007/s12567-020-00318-4

    CrossRef  Google Scholar 

  • McKay, D. S., Fruland, R. M., & Heiken, G. H., (1974). Grain size and the evolution of lunar soils. In Proceedings of the 5th Lunar and planetary science conference (Vol. 1, pp. 887–906).

    Google Scholar 

  • McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B., & Papike, J. (1991). The lunar regolith. In G. Heiken, D. Vaniman & B. French (Eds.), Lunar Sourcebook. Cambridge University Press.

    Google Scholar 

  • McKay, D. S., Carter, J. L., Boles, W. W., Allen, C. C., & Allton, J. H. (1994). JSC-1: A new lunar soil simulant. Engineering, Construction, and Operations in Space IV, American Society of Civil Engineers, 857–866.

    Google Scholar 

  • McKay, D. S., & Ming, D. W. (1990). Properties of lunar regolith. Developments in Soil Science., 19, 449–462.

    CrossRef  Google Scholar 

  • Meinen, E., Dueck, T., Kempkes, F., & Stanghellini, C. (2018). Growing fresh food on future space missions: Environmental conditions and crop management. Scientia Horticulturae, 235, 270–278.

    CrossRef  Google Scholar 

  • Milliken, R. E., & Li, S. (2017). Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nature Geoscience, 10, 561–565.

    CrossRef  ADS  Google Scholar 

  • Mytrokhyn, O. V., Bogdanova, S. V., Shumlyanskyy, L. V. (2003). Anorthosite rocks of Fedorivskyy Suite (Korosten Pluton, Ukrainian Shield). Current Problems in Geology. Kyiv National University, Kyiv, 53–57.

    Google Scholar 

  • NASA. (2018). Lunar impacts. https://www.nasa.gov/centers/marshall/news/lunar/lunar_impacts.html

  • Nelson, M. (2018). Pushing our limits: Insights from Biosphere 2. University of Arizona Press. https://doi.org/10.2307/j.ctt1zxsmg9

    CrossRef  Google Scholar 

  • Pilehvar, S., Arnhof, M., Pamies, R., Valentini, L., Kjøniksen, A. L. (2020). Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures Journal of Cleaner Production, 247, 119177.

    Google Scholar 

  • Pouwels, C. R., Wamelink, G. W. W., Musilova, M., & Foing, B. (2020). Food for extra-terrestrial missions on native soil. In 51st Lunar and Planetary Science Conference, USA, abstract 1605.

    Google Scholar 

  • Rask J. (2018). Lunar dust toxicity. In B. Cudnik (Eds.), Encyclopedia of lunar science. Springer, Cham

    Google Scholar 

  • Rampazzo, N., Blum, W. E. H., & Wimmer, B. (1998). Assessment of soil structure parameters and functions in agricultural soils. Die Bodenkultur, 49, 69–84.

    Google Scholar 

  • Sardare, M. D., & Admane, S. V. (2013). A review on plant without soil–hydroponics. International Journal of Research in Engineering and Technology, 2, 299–304.

    CrossRef  Google Scholar 

  • Suescan-Florez, E., Roslyakov, S., Iskander, M., Baamer, M. (2015). Geotechnical properties of BP-1 lunar regolith simulant. Journal of Aerospace Engineering, 28. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000462

  • Slyuta, E. N. (2014). Physical and mechanical properties of the lunar soil (a review). Solar System Research, 48, 330–353.

    CrossRef  ADS  Google Scholar 

  • Stubbs, T. J., Vondrak, R. R., & Farrell, W. M. (2007). Impact of dust on lunar exploration. Goddard spaceflight center, http://helf.jsc.nasa.gov/files/ StubbsImpactOn Exploration.4075.pdf

  • Taylor, L. A. Schmitt, H. H., Carrier III, W. D. & Nakagawa, M. (2005). The lunar dust problem: From liability to asset. 1st space exploration conference: Continuing the voyage of discovery. Orlando, Florida, United States, pp. 71–78.

    Google Scholar 

  • Taylor, L. A., Pieters, C. M., & Britt, D. (2016). Evaluations of lunar regolith simulants. Planetary Space Science, 126, 1–7.

    CrossRef  ADS  Google Scholar 

  • Toklu, Y. C., Çerçevik, A. E., Kandemir, S. Y., & Yayli, M. O. (2017). Production of lunar soil simulant in Turkey. In 2017 8th International Conference on Recent Advances in Space Technologies, IEEE, 1–5.

    Google Scholar 

  • Walkinshaw, C. H., Sweet, H. C., Venketeswaran, S., & Horne, W. H. (1970). Results of Apollo 11 and 12 quarantine studies on plants. BioScience, 20, 1297–1302.

    CrossRef  Google Scholar 

  • Walkinshaw, C. H., & Johnson, P. H. (1971). Analysis of vegetable seedlings grown in contact with Apollo 14 lunar surface fines. Hortscience, 6, 532–535.

    Google Scholar 

  • Walkinshaw, C. H., & Galliano, S. G. (1990). New crops for space bases. In J. Janick & J. E. Simon (Eds.), Advances in new crops. Proceedings of the first national symposium on new crops: Research, development, economics, Indianapolis, Indiana (pp. 532–535).

    Google Scholar 

  • Wamelink, G. W. W., Goedhart, P. W., van Dobben, H. H., & Berendse, F. (2005). Plant species as predictors of soil pH: Replacing expert judgement by measurements. Journal of Vegetation Science, 16, 461–470.

    CrossRef  Google Scholar 

  • Wamelink, G. W. W., Frissel, J. Y., Verwoert, W. H. J., & Goedhart, P. W. (2014). Can plants grow on mars and the moon: A growth experiment on mars and moon soil simulants. PLoS ONE, 9, e103138.

    Google Scholar 

  • Wamelink, G. W. W., Frissel, J. Y., & Verwoert, M. R. (2019). Crop growth and viability of seeds on mars and moon soil simulants. Open Agriculture, 4, 509–516.

    CrossRef  Google Scholar 

  • Weiblen, P. W., & Gordon, K. (1988). Characteristics of a simulant for lunar surface materials. Second conference on lunar bases and space activities of the 21st century (p. 254).

    Google Scholar 

  • Wyatt, S. E., & Kiss, J. Z. (2013). Plant tropisms: From darwin to the international space station. American Journal of Botany, 100, 1–3.

    CrossRef  Google Scholar 

  • Zaets, I., Burlak, O., Rogutsky, I., Vasilenko, A., Mytrokhyn, O., Lukashov, D., Foing, B., & Kozyrovska, N. (2011). Bioaugmenation in growing plants for lunar bases. Advances in Space Research, 47, 1071–1078.

    CrossRef  ADS  Google Scholar 

  • Zhang, X., Osinski, G. R., Newson, T., Ahmed, A., Touqan, M., Joshi, D., & Hill, H. (2019). A comparative study of lunar regolith simulants in relation to terrestrial tests of lunar exploration missions. 50th Lunar and planetary science conference LPI contribution no. 2132.

    Google Scholar 

  • Zheng, Y., Wang, S., Ziyuan, O., Yongliao, Z., Jianzhong, L., Xiongyao, L., & Junming, F. (2009). CAS-1 lunar soil simulant. Advances in Space Research, 43, 448–454.

    CrossRef  ADS  Google Scholar 

  • Zhu, C., Crandall, P. B., Gillis-Davis, J. J., Ishli, H. A., Bradley, J. P., Corley, L. M., & Kaiser, R. I. (2019). Untangling the formation and liberation of water in the lunar regolith. In Proceedings of the National Academy of Sciences of the United States of America 116 (pp. 11165–11170).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Braddock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braddock, M. (2021). Understanding and Managing the Hazards and Opportunities of Lunar Regolith in Greenhouse Agriculture. In: Rappaport, M.B., Szocik, K. (eds) The Human Factor in the Settlement of the Moon. Space and Society. Springer, Cham. https://doi.org/10.1007/978-3-030-81388-8_6

Download citation