Skip to main content

Classification Problem and Parameter Estimating of Gamma-Ray Bursts

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020)

Abstract

There are at least two distinct classes of Gamma-Ray Bursts (GRB) according to their progenitors: short duration and long duration bursts. It was shown that short bursts result from compact binary merging, while long bursts are associated with core collapse supernova. However, one could suspect the existence of more classes and subclasses. For example, compact binary can be double neutron stars, or neutron star and black hole, which might generate gamma-ray bursts with different properties. From another hand, gamma-ray transients are known to be produced by magnetars in Galaxy, named Soft Gamma-Repeaters (SGR). A Giant Flare from SGR can be detected from a nearby galaxy, and it can mimic for a short GRB. So the classification problem is very important for correct investigation of different transient progenitors. Gamma-ray transients are characterized by a number of parameters and known phenomenology correlations between them, obtained for well classified ones. Using these correlations, which could be unique for different classes of gamma-ray transients, we can classify an event and determine the type of its progenitor, using only temporal and spectral characteristics. We suggest the statistical classification method, based on the cluster analysis of the trained dataset of 323 events. Using the known dependencies, one can not only classify the types of gamma-ray bursts, but also discriminate events that are not associated with gamma-ray bursts, but have a different physical nature. We show that GRB 200415A, originally classified as a short GRB, probably does not belong to the class of short GRBs, but it is most likely associated with the giant flare of SGR. On the other hand, we can estimate one of the unknown parameters if we assume the certain classification of the event. As an example, an estimate the redshift of the GRB 200422A source is given. We also discuss that in some cases it is possible to give a probabilistic estimate of the unknown parameters of the source. The method could be applied to any other analogous classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, B.P., et al.: GW190425: observation of a compact binary coalescence with total mass \(\sim \)3.4 M\(_{o}\). ApJ 892(1), L3 (2020). https://doi.org/10.3847/2041-8213/ab75f5

  2. Abbott, B.P., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. ApJ 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  Google Scholar 

  3. Abbott, B.P., et al.: Multi-messenger observations of a binary neutron star merger. ApJ 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  Google Scholar 

  4. Amati, L., et al.: Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. A&A 390, 81–89 (2002). https://doi.org/10.1051/0004-6361:20020722

  5. Barkov, M.V., Pozanenko, A.S.: Model of the extended emission of short gamma-ray bursts. MNRAS 417, 2161–2165 (2011). https://doi.org/10.1111/j.1365-2966.2011.19398.x

    Article  Google Scholar 

  6. Blinnikov, S.I., Novikov, I.D., Perevodchikova, T.V., Polnarev, A.G.: Exploding neutron stars in close binaries. Sov. Astron. Lett. 10, 177–179 (1984)

    Google Scholar 

  7. Cano, Z., Wang, S.Q., Dai, Z.G., Wu, X.F.: The observer’s guide to the gamma-ray burst supernova connection. Adv. Astron. 2017, 8929054 (2017). https://doi.org/10.1155/2017/8929054

    Article  Google Scholar 

  8. Chand, V., et al.: Magnetar giant flare originated GRB 200415A: transient GeV emission, ten-year Fermi-LAT upper limits and implications. arXiv e-prints arXiv:2008.10822, August 2020

  9. Connaughton, V.: BATSE observations of gamma-ray burst tails. ApJ 567, 1028–1036 (2002). https://doi.org/10.1086/338695

    Article  Google Scholar 

  10. Dezalay, J.P., Barat, C., Talon, R., Syunyaev, R., Terekhov, O., Kuznetsov, A.: Short cosmic events: a subset of classical GRBs? In: Paciesas, W.S., Fishman, G.J. (eds.) American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 265, p. 304, January 1992

    Google Scholar 

  11. Eichler, D., Levinson, A.: An interpretation of the h\(\nu \)\(_{peak}\)-E\(_{iso}\) correlation for gamma-ray bursts. ApJ 614, L13–L16 (2004). https://doi.org/10.1086/425310

    Article  Google Scholar 

  12. Fermi GBM Team: GRB 200415A: fermi GBM final real-time localization. GRB Coordinates Netw. 27579, 1 (2020)

    Google Scholar 

  13. Frederiks, D., et al.: Konus-wind team: konus-wind observation of GRB 200415A (a magnetar giant flare in sculptor galaxy?). GRB Coordinates Netw. 27596, 1 (2020)

    Google Scholar 

  14. Frederiks, D.D., et al.: Giant flare in SGR 1806–20 and its Compton reflection from the Moon. Astron. Lett. 33(1), 1–18 (2007). https://doi.org/10.1134/S106377370701001X

    Article  Google Scholar 

  15. Frederiks, D.D., Palshin, V.D., Aptekar, R.L., Golenetskii, S.V., Cline, T.L., Mazets, E.P.: On the possibility of identifying the short hard burst GRB 051103 with a giant flare from a soft gamma repeater in the M81 group of galaxies. Astron. Lett. 33(1), 19–24 (2007). https://doi.org/10.1134/S1063773707010021

    Article  Google Scholar 

  16. Galama, T.J., et al.: An unusual supernova in the error box of the \(\gamma \)-ray burst of 25 April 1998. Nature 395, 670–672 (1998). https://doi.org/10.1038/27150

  17. Gehrels, N., et al.: A new \(\gamma \)-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006). https://doi.org/10.1038/nature05376

    Article  Google Scholar 

  18. Gupta, S., et al.: AstroSat CZTI collaboration: GRB 200422A: AstroSat CZTI detection. GRB Coordinates Netw. 27630, 1 (2020)

    Google Scholar 

  19. Hurley, K., et al.: IPN triangulation of GRB 200422A (long/very bright). GRB Coordinates Netw. 27626, 1 (2020)

    Google Scholar 

  20. Koshut, T.M., et al.: Systematic effects on duration measurements of gamma-ray bursts. ApJ 463, 570 (1996). https://doi.org/10.1086/177272

    Article  Google Scholar 

  21. Kouveliotou, C., et al.: Identification of two classes of gamma-ray bursts. ApJ 413, L101–L104 (1993). https://doi.org/10.1086/186969

    Article  Google Scholar 

  22. Kouveliotou, C., et al.: Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14. ApJ 510(2), L115–L118 (1999). https://doi.org/10.1086/311813

    Article  Google Scholar 

  23. Levinson, A., Eichler, D.: The difference between the Amati and Ghirlanda relations. ApJ 629, L13–L16 (2005). https://doi.org/10.1086/444356

    Article  Google Scholar 

  24. Lü, H.J., Liang, E.W., Zhang, B.B., Zhang, B.: A new classification method for gamma-ray bursts. ApJ 725(2), 1965–1970 (2010). https://doi.org/10.1088/0004-637X/725/2/1965

    Article  Google Scholar 

  25. Marisaldi, M., Mezentsev, A., Østgaard, N., Reglero, V., Neubert, T.: ASIM team: GRB 200415A: ASIM observation. GRB Coordinates Netw. 27622, 1 (2020)

    Google Scholar 

  26. Mazets, E.P., et al.: A giant flare from a soft gamma repeater in the andromeda galaxy (M31). ApJ 680(1), 545–549 (2008). https://doi.org/10.1086/587955

    Article  Google Scholar 

  27. Mazets, E.P., et al.: Catalog of cosmic gamma-ray bursts from the KONUS experiment data. I. Ap&SS 80, 3–83 (1981). https://doi.org/10.1007/BF00649140

    Article  Google Scholar 

  28. Mészáros, P.: Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006). https://doi.org/10.1088/0034-4885/69/8/R01

    Article  Google Scholar 

  29. Meszaros, P., Rees, M.J.: Tidal heating and mass loss in neutron star binaries - implications for gamma-ray burst models. ApJ 397, 570–575 (1992). https://doi.org/10.1086/171813

    Article  Google Scholar 

  30. Metzger, B.D., Quataert, E., Thompson, T.A.: Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. MNRAS 385, 1455–1460 (2008). https://doi.org/10.1111/j.1365-2966.2008.12923.x

    Article  Google Scholar 

  31. Minaev, P., Chelovekov, I., Pozanenko, A., Grebenev, S.: GRB IKI FuN: GRB 200422A: INTEGRAL observations. GRB Coordinates Netw. 27694, 1 (2020)

    Google Scholar 

  32. Minaev, P.Y., Grebenev, S.A., Pozanenko, A.S., Molkov, S.V., Frederiks, D.D., Golenetskii, S.V.: GRB 070912 - a gamma-ray burst recorded from the direction to the galactic center. Astron. Lett. 38, 613–628 (2012). https://doi.org/10.1134/S1063773712100064

    Article  Google Scholar 

  33. Minaev, P.Y., Pozanenko, A.S.: Precursors of short gamma-ray bursts in the SPI-ACS/INTEGRAL experiment. Astron. Lett. 43, 1–20 (2017). https://doi.org/10.1134/S1063773717010017

    Article  Google Scholar 

  34. Minaev, P.Y., Pozanenko, A.S.: The E\(_{p, i}\)-E\(_{iso}\) correlation: type I gamma-ray bursts and the new classification method. MNRAS 492(2), 1919–1936 (2020). https://doi.org/10.1093/mnras/stz3611

    Article  Google Scholar 

  35. Minaev, P.Y., Pozanenko, A.S., Loznikov, V.M.: Extended emission from short gamma-ray bursts detected with SPI-ACS/INTEGRAL. Astron. Lett. 36, 707–720 (2010). https://doi.org/10.1134/S1063773710100026

    Article  Google Scholar 

  36. Minaev, P.Y., Pozanenko, A.S., Loznikov, V.M.: Short gamma-ray bursts in the SPI-ACS INTEGRAL experiment. Astrophys. Bull. 65, 326–333 (2010). https://doi.org/10.1134/S1990341310040024

    Article  Google Scholar 

  37. Minaev, P.Y., Pozanenko, A.S., Molkov, S.V., Grebenev, S.A.: Catalog of short gamma-ray transients detected in the SPI/INTEGRAL experiment. Astron. Lett. 40, 235–267 (2014). https://doi.org/10.1134/S106377371405003X

    Article  Google Scholar 

  38. Minaev, P., Pozanenko, A.: GRB 200415A: magnetar giant flare or short gamma-ray burst? Astron. Lett. 46, 573–585 (2020). https://doi.org/10.1134/S1063773720090042

  39. Norris, J.P., Bonnell, J.T., Kazanas, D., Scargle, J.D., Hakkila, J., Giblin, T.W.: Long-lag, wide-pulse gamma-ray bursts. ApJ 627, 324–345 (2005). https://doi.org/10.1086/430294

    Article  Google Scholar 

  40. Norris, J.P., Gehrels, N., Scargle, J.D.: Threshold for extended emission in short gamma-ray bursts. ApJ 717, 411–419 (2010). https://doi.org/10.1088/0004-637X/717/1/411

    Article  Google Scholar 

  41. Omodei, N., et al.: Fermi-LAT collaboration: GRB 200415A: Fermi-LAT detection. GRB Coordinates Netw. 27586, 1 (2020)

    Google Scholar 

  42. Paczynski, B.: Gamma-ray bursters at cosmological distances. ApJ 308, L43–L46 (1986). https://doi.org/10.1086/184740

    Article  Google Scholar 

  43. Paczyński, B.: Are gamma-ray bursts in star-forming regions? ApJ 494, L45–L48 (1998). https://doi.org/10.1086/311148

    Article  Google Scholar 

  44. Ade, P.A.R., et al.: Planck 2013 results. XVI. Cosmological parameters. A&A 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591. Planck Collaboration

  45. Pozanenko, A., Minaev, P., Chelovekov, I., Grebenev, S.: GRB 200415A (possible magnetar Giant Flare in Sculptor Galaxy): INTEGRAL observations. GRB Coordinates Netw. 27627, 1 (2020)

    Google Scholar 

  46. Pozanenko, A.S., et al.: GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. ApJ 852, L30 (2018). https://doi.org/10.3847/2041-8213/aaa2f6

    Article  Google Scholar 

  47. Pozanenko, A.S., Minaev, P.Y., Grebenev, S.A., Chelovekov, I.V.: Observation of the second LIGO/Virgo event connected with a binary neutron star merger S190425z in the gamma-ray range. Astron. Lett. 45(11), 710–727 (2020). https://doi.org/10.1134/S1063773719110057

    Article  Google Scholar 

  48. Qin, Y.P., Chen, Z.F.: Statistical classification of gamma-ray bursts based on the Amati relation. MNRAS 430, 163–173 (2013). https://doi.org/10.1093/mnras/sts547

    Article  Google Scholar 

  49. Rosswog, S.: Fallback accretion in the aftermath of a compact binary merger. MNRAS 376(1), L48–L51 (2007). https://doi.org/10.1111/j.1745-3933.2007.00284.x

    Article  Google Scholar 

  50. Svinkin, D., et al.: Improved IPN error box for GRB 200415A (consistent with the Sculptor Galaxy). GRB Coordinates Netw. 27595, 1 (2020)

    Google Scholar 

  51. Svinkin, D., et al.: Konus-Wind Team: konus-wind observation of GRB 200422A. GRB Coordinates Netw. 27635, 1 (2020)

    Google Scholar 

  52. Svinkin, D., et al.: IPN triangulation of GRB 200415A (possible Magnetar Giant Flare in Sculptor Galaxy?). GRB Coordinates Netw. 27585, 1 (2020)

    Google Scholar 

  53. Volnova, A.A., et al.: Multicolour modelling of SN 2013dx associated with GRB 130702A. MNRAS 467, 3500–3512 (2017). https://doi.org/10.1093/mnras/stw3297

    Article  Google Scholar 

  54. Woosley, S.E.: Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405, 273–277 (1993). https://doi.org/10.1086/172359

    Article  Google Scholar 

  55. Yang, J., et al.: GRB 200415A: a short gamma-ray burst from a magnetar giant flare? ApJ 899(2), 106 (2020). https://doi.org/10.3847/1538-4357/aba745

    Article  Google Scholar 

  56. Zhang, H.M., Liu, R.Y., Zhong, S.Q., Wang, X.Y.: Magnetar giant flare origin for GRB 200415A inferred from a new scaling relation. arXiv e-prints arXiv:2008.05097, August 2020

  57. Zhang, Z.B., et al.: Spectrum-energy correlations in GRBs: update, reliability, and the long/short dichotomy. PASP 130(987), 054202 (2018). https://doi.org/10.1088/1538-3873/aaa6af

Download references

Acknowledgments

Authors acknowledge financial support from RSF grant 18-12-00378.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minaev, P., Pozanenko, A. (2021). Classification Problem and Parameter Estimating of Gamma-Ray Bursts. In: Sychev, A., Makhortov, S., Thalheim, B. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2020. Communications in Computer and Information Science, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-030-81200-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81200-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81199-0

  • Online ISBN: 978-3-030-81200-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics