Skip to main content

Introduction to Precision Medicine: Minority Populations and Cardiovascular Health

  • Chapter
  • First Online:
Cardiovascular Disease in Racial and Ethnic Minority Populations

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Genomic medicine is the foundation for precision medicine. Classically genomic medicine focuses on rare diseases including syndromic conditions, inborn errors of metabolism, and well-known conditions such as sickle cell anemia. Rare forms of heart disease include hereditary aortopathies, cardiomyopathies, channelopathies, familial hypercholesterolemia, and rare syndromic conditions with cardiac features. These rare heritable forms of heart disease are classically described by their phenotypic presentation in addition to their genetic component. In both rare “heritable” disease and somatic “acquired” diseases like cancer, the identification of the genetic component is a key determinant for definitive diagnosis, prognosis, and treatment. Precision medicine is not only elevating the scale and approach to detecting and treating these diseases but is also catalyzing the extension of genomics beyond rare diseases and cancer to incorporate complex common diseases such as heart disease. This transformational shift in medical paradigms is supported in part through technological innovations and a growing molecular knowledge base. However, this growing knowledge base is complicated by a lack of diversity. This lack of diversity creates a bias in knowledge and jeopardizes the generalizability and implementation of precision medicine and furthers existing disparities. Evidence of this is exampled by the commercial availability of polygenic risk testing, some of which are available to White patients only. Without an equity first approach, the benefits of precision medicine may not be in the position to benefit all. To this end, we discuss precision medicine in the context of minority populations and cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AOU. The “all of us” research program. N Engl J Med. 2019;381(19):1883–5.

    Article  Google Scholar 

  2. Kohler JN, Turbitt E, Biesecker BB. Personal utility in genomic testing: a systematic literature review. Eur J Hum Genet. 2017a;25(6):662–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armstrong K, Micco E, Carney A, Stopfer J, Putt M. Racial differences in the use of BRCA1/2 testing among women with a family history of breast or ovarian cancer. JAMA. 2005;293:1729–36.

    Article  CAS  PubMed  Google Scholar 

  4. Auer PL, Reiner AP, Wang G, Kang HM, Abecasis GR, Altshuler D, et al. Guidelines for large-scale sequence-based complex trait association studies: lessons learned from the NHLBI exome sequencing project. Am J Hum Genet. 2016;99(4):791–801. https://doi.org/10.1016/j.ajhg.2016.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachtiar M, Ooi B, Wang J, Jin Y, Tan TW, Chong SS, Lee C. Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharm J. 2019;19(6):516–27. https://doi.org/10.1038/s41397-019-0096-y.

    Article  CAS  Google Scholar 

  6. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475:163–5. https://doi.org/10.1038/475163a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buxbaum JN, Ruberg FL. Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet Med. 2017;19:733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chow N, Gallo L, Busse JW. Evidence-based medicine and precision medicine: complementary approaches to clinical decision-making. Precis Clin Med. 2018 Sep;1(2):60–4. https://doi.org/10.1093/pcmedi/pby009.

    Article  Google Scholar 

  9. De T, Alarcon C, Hernandez W, et al. Association of genetic variants with Warfarin-associated bleeding among patients of African descent. JAMA. 2018;320(16):1670–7. https://doi.org/10.1001/jama.2018.14955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1):70. https://doi.org/10.1186/s13073-019-0689-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, Domingue B. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10(1):3328. https://doi.org/10.1038/s41467-019-11112-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giudicessi JR, Kullo IJ, Ackerman MJ. Precision cardiovascular medicine: state of genetic testing. Mayo Clin Proc. 2017;92:642–62.

    Article  PubMed  Google Scholar 

  13. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, Wadelius M. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404. https://doi.org/10.1002/cpt.668.

    Article  CAS  PubMed  Google Scholar 

  14. Kieserman JM, Myers VD, Dubey P, Cheung JY, Feldman AM. Current landscape of heart failure gene therapy. J Am Heart Assoc. 2019;8(10):e012239. https://doi.org/10.1161/JAHA.119.012239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohler JN, Turbitt E, Lewis KL, Wilfond BS, Jamal L, Peay HL, et al. Defining personal utility in genomics: a Delphi study. Clin Genet 2017b;92(3):290–297. pmid:28218387.

    Google Scholar 

  16. Knepper TC, McLeod HL. When will clinical trials finally reflect diversity? Nature. 2018;557:157–9. https://doi.org/10.1038/d41586-018-05049-5.

    Article  CAS  PubMed  Google Scholar 

  17. Kullo IJ, et al. Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2019;12:e000054.

    PubMed  Google Scholar 

  18. Landry LG, et al. Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice. Health Aff (Millwood). 2018;37:780–5. https://doi.org/10.1377/hlthaff.2017.1595.

    Article  Google Scholar 

  19. Landry LG, Rehm HL. Association of racial/ethnic categories with the ability of genetic tests to detect a cause of cardiomyopathy. JAMA Cardiol. 2018;3(4):341–5. https://doi.org/10.1001/jamacardio.2017.5333.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landry L, Nielsen DE, Carere DA, Roberts JS, Green RC, PGen Study Group. Racial minority group interest in direct-to-consumer genetic testing: findings from the PGen study. J Community Genet. 2017;8:293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lewis CM, Vassos E. Prospects for using risk scores in polygenic medicine. Genome Med. 2017;9:96. https://doi.org/10.1186/s13073-017-0489-y.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manrai AK, Funke BH, Rehm HL, et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med. 2016;375(7):655–65. https://doi.org/10.1056/NEJMsa1507092.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91. https://doi.org/10.1038/s41588-019-0379-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Natarajan P. Polygenic risk scoring for coronary heart disease: the first risk factor. J Am Coll Cardiol. 2018;72(16):1894–7. https://doi.org/10.1016/j.jacc.2018.08.1041.

    Article  PubMed  PubMed Central  Google Scholar 

  25. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on Community-Based Solutions to Promote Health Equity in the United States; Baciu A, Negussie Y, Geller A, et al., editors. Communities in Action: Pathways to Health Equity. Washington (DC): National Academies Press (US); 2017 Jan 11. 2, The State of Health Disparities in the United States. Available from: https://www.ncbi.nlm.nih.gov/books/NBK425844/

  26. Peloso GM, Lange LA, Varga TV, Nickerson DA, Smith JD, Griswold ME, Musani S, Polfus LM, Mei H, Gabriel S, et al. Association of exome sequences with cardiovascular traits among Blacks in the Jackson Heart Study. Circ Cardiovasc Genet. 2016;9:368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, Johnson JA. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet (London, England). 2013;382(9894):790–6. https://doi.org/10.1016/S0140-6736(13)60681-9.

    Article  CAS  Google Scholar 

  28. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538:161–4. https://doi.org/10.1038/538161a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramos E, Callier SL, Rotimi CN. Why personalized medicine will fail if we stay the course. Pers Med. 2012;9:839–47. https://doi.org/10.2217/pme.12.100.

    Article  CAS  Google Scholar 

  30. Raygor V, Knowles J. JACC. What have the recent registry-related studies told us about familial hypercholesterolemia care? 2018 Feb 7. https://www.acc.org/latest-in-cardiology/articles/2018/02/07/13/27/what-have-the-recent-registry-related-studies-told-us-about-fh-care

  31. Ribeil J-A, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, Caccavelli L, Neven B, Bourget P, El Nemer W. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848–55.

    Article  CAS  PubMed  Google Scholar 

  32. Shah KB, Mankad AK, Castano A, et al. Transthyretin cardiac amyloidosis in black Americans. Circ Heart Fail. 2016;9(6):e002558. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shields AE, Burke W, Levy DE. Differential use of available genetic tests among primary care physicians in the United States: results of a national survey. Genet Med. 2008;10:404–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100:895–906. https://doi.org/10.1016/j.ajhg.2017.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugrue LP, Desikan RS. What are polygenic scores and why are they important? JAMA. 2019;321(18):1820–1. https://doi.org/10.1001/jama.2019.3893.

    Article  PubMed  Google Scholar 

  36. Topol EJ. Cholesterol, racial variation and targeted medicines. Nat Med. 2005;11:122–3.

    Article  CAS  PubMed  Google Scholar 

  37. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581–90. https://doi.org/10.1038/s41576-018-0018-x.

    Article  CAS  PubMed  Google Scholar 

  38. Walsh R, Thomson K, Ware J, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203. https://doi.org/10.1038/gim.2016.90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latrice Landry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landry, L. (2021). Introduction to Precision Medicine: Minority Populations and Cardiovascular Health. In: Ferdinand, K.C., Taylor, Jr., H.A., Rodriguez, C.J. (eds) Cardiovascular Disease in Racial and Ethnic Minority Populations. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-81034-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81034-4_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-81033-7

  • Online ISBN: 978-3-030-81034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics