Skip to main content

Differential Galois Theory and Integration

  • Chapter
  • First Online:
Anti-Differentiation and the Calculation of Feynman Amplitudes

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

In this chapter, we present methods to simplify reducible linear differential systems before solving. Classical integrals appear naturally as solutions of such systems. We will illustrate the methods developed in Dreyfus and Weil (Computing the Lie algebra of the differential Galois group: The reducible case, ArXiv 1904.07925 2019) on several examples to reduce the differential system. This will give information on potential algebraic relations between integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function is D-finite when its is a solution of a linear differential equations with coefficients in k.

  2. 2.

    See https://dlmf.nist.gov/31.12 or [13]. The notation HeunC is the syntax in Maple.

  3. 3.

    An invertible n × n matrix U such that U′ = AU.

  4. 4.

    A Lie algebra is called algebraic when it is the Lie algebra of a linear algebraic group. When the M i are given, this can be computed, see [56], Section 3, or [1], Section 6.

  5. 5.

    For this reason, some authors, including ourselves, call the decomposition \(A=\sum _{i=1}^s a_i M_i\) a Wei-Norman decomposition of A.

  6. 6.

    The notation \(H(\overline {\mathbf {k}})\) denotes matrices whose entries are in \(\overline {\mathbf {k}}\) and satisfy all the equations defining the algebraic group H.

  7. 7.

    A field k is a \(\mathcal {C}^{1}\)-field when every non-constant homogeneous polynomial P over k has a non-trivial zero provided that the number of its variables is more than its degree. For example, \(\mathcal {C}(x)\) is a \(\mathcal {C}^{1}\)-field and any algebraic extension of a \(\mathcal {C}^{1}\)-field is a \(\mathcal {C}^{1}\)-field (Tsen’s theorem).

  8. 8.

    The reader may also find a pdf version athttp://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.pdf.

References

  1. T. Dreyfus, J.-A. Weil, Computing the Lie algebra of the differential Galois group: The reducible case (2019). ArXiv 1904.07925

    Google Scholar 

  2. D. Bertrand, Unipotent radicals of differential Galois group and integrals of solutions of inhomogeneous equations. Math. Ann. 321(3), 645–666 (2001)

    Article  MathSciNet  Google Scholar 

  3. P.H. Berman, M.F. Singer, Calculating the Galois group of L 1(L 2(y)) = 0, L 1, L 2 completely reducible operators. J. Pure Appl. Algebra 139(1–3), 3–23 (1999). Effective methods in algebraic geometry (Saint-Malo, 1998)

    Google Scholar 

  4. G. Casale, J.-A. Weil, Galoisian methods for testing irreducibility of order two nonlinear differential equations. Pacific J. Math. 297(2), 299–337 (2018)

    Article  MathSciNet  Google Scholar 

  5. M. van der Put, M.F. Singer, Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328 (Springer, Berlin, 2003)

    Google Scholar 

  6. T. Crespo, Z. Hajto, Algebraic Groups and Differential Galois Theory. Graduate Studies in Mathematics, vol. 122 (American Mathematical Society, Providence, 2011)

    Google Scholar 

  7. M.F. Singer, Introduction to the Galois theory of linear differential equations, in Algebraic Theory of Differential Equations. London Mathematical Society Lecture Note Series, vol. 357 (Cambridge University Press, Cambridge, 2009), pp. 1–82

    Google Scholar 

  8. A. Aparicio-Monforte, É. Compoint, J.-A. Weil, A characterization of reduced forms of linear differential systems. J. Pure Appl. Algeb.217(8), 1504–1516 (2013)

    Article  MathSciNet  Google Scholar 

  9. C. Mitschi, M.F. Singer, Solvable-by-finite groups as differential Galois groups. Ann. Fac. Sci. Toulouse Math. 11(3), 403–423 (2002)

    Article  MathSciNet  Google Scholar 

  10. A. Aparicio-Monforte, T. Dreyfus, J.-A. Weil, Liouville integrability: an effective Morales–Ramis–Simó theorem. J. Symb. Comput. 74, 537–560 (2016)

    Article  Google Scholar 

  11. M. Barkatou, T. Cluzeau, L. Di Vizio, J.-A. Weil, Reduced forms of linear differential systems and the intrinsic Galois-Lie algebra of Katz. SIGMA Symmetry Integra. Geom. Methods Appl. 16(054), 13 (2020)

    Google Scholar 

  12. M. Barkatou, T. Cluzeau, J.-A. Weil, L. Di Vizio, Computing the lie algebra of the differential galois group of a linear differential system, in Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation (2016), pp. 63–70

    Google Scholar 

  13. O.V. Motygin, On evaluation of the confluent heun functions, in 2018 Days on Diffraction (DD) (IEEE, Piscataway, 2018), pp. 223-229

    Book  Google Scholar 

  14. J.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2(1), 3–43 (1986)

    Article  MathSciNet  Google Scholar 

  15. F. Ulmer, J.-A. Weil, Note on Kovacic’s algorithm. J. Symbolic Comput. 22(2), 179–200 (1996)

    Article  MathSciNet  Google Scholar 

  16. M. van Hoeij, J.-A. Weil, Solving second order differential equations with Klein’s theorem, in ISSAC ’05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (Beijing) (ACM, New York, 2005)

    Google Scholar 

  17. S.A. Abramov, M. van Hoeij, Integration of solutions of linear functional equations. Integral Transform. Spec. Funct. 8(1–2), 3–12 (1999)

    Article  MathSciNet  Google Scholar 

  18. S.A. Abramov, M. van Hoeij, A method for the integration of solutions of Ore equations, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI) (ACM, New York, 1997), pp. 172–175

    Google Scholar 

  19. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic [Harcourt Brace Jovanovich Publishers], London, 1982)

    Google Scholar 

  20. B.M. McCoy, Advanced Statistical Mechanics. International Series of Monographs on Physics, vol. 146 (Oxford University Press, Oxford, 2010)

    Google Scholar 

  21. B.M. McCoy, J-M. Maillard, The importance of the ising model. Prog. Theor. Phys. 127 (2012), 791–817 (2012)

    Article  Google Scholar 

  22. B.M. McCoy, M. Assis, S. Boukraa, S. Hassani, J.-M. Maillard, W.P. Orrick, N. Zenine, The saga of the Ising susceptibility, in New Trends in Quantum Integrable Systems (World Scientific Publishing, Hackensack, 2011), pp. 287–306

    MATH  Google Scholar 

  23. S. Boukraa, S. Hassani, J.-M. Maillard, B.M. McCoy, J.-A. Weil, N. Zenine, Fuchs versus Painlevé. J. Phys. A 40(42), 12589–12605 (2007)

    Article  MathSciNet  Google Scholar 

  24. A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine, Globally nilpotent differential operators and the square Ising model. J. Phys. A 42(12), 125206, 50 (2009)

    Google Scholar 

  25. A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine, N. Abarenkova, Renormalization, isogenies, and rational symmetries of differential equations. Adv. Math. Phys. 2010, 44p (2010)

    Article  MathSciNet  Google Scholar 

  26. A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, N. Zenine, The Ising model: from elliptic curves to modular forms and Calabi-Yau equations. J. Phys. A Math. Theor. 44(4), 045204, 44 (2011)

    Google Scholar 

  27. S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, Differential algebra on lattice green and calabi-yau operators. J. Phys. A: Math. Theor. 47(9), 095203 (2014)

    Google Scholar 

  28. S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, Canonical decomposition of irreducible linear differential operators with symplectic or orthogonal differential galois groups. J. Phys. A: Math. Theor. 48(10), 105202 (2015)

    Google Scholar 

  29. S. Hassani, Ch. Koutschan, J.-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centered cubic lattice, d = 8,  9,  10,  11,  12. J. Phys. A 49(16), 164003, 30 (2016)

    Google Scholar 

  30. C. Koutschan, Lattice Green functions of the higher-dimensional face-centered cubic lattices. J. Phys. A 46(12), 125005, 14 (2013)

    Google Scholar 

  31. Y. Abdelaziz, S. Boukraa, C. Koutschan, J.-M. Maillard, Heun functions and diagonals of rational functions. J. Phys. A 53(7), 075206, 24 (2020)

    Google Scholar 

  32. Y. Abdelaziz, S. Boukraa, C. Koutschan, J.-M. Maillard, Diagonals of rational functions, pullbacked 2 F 1 hypergeometric functions and modular forms. J. Phys. A 51(45), 455201, 30 (2018)

    Google Scholar 

  33. T.M. Sadykov, S. Tanabé, Maximally reducible monodromy of bivariate hypergeometric systems. Izv. Ross. Akad. Nauk Ser. Mat. 80(1), 235–280 (2016)

    Article  MathSciNet  Google Scholar 

  34. M.Yu. Kalmykov, Gauss hypergeometric function: reduction, 𝜖-expansion for integer/half-integer parameters and Feynman diagrams. J. High Energy Phys. 2006(4), 056, 21 (2006)

    Google Scholar 

  35. V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, Differential reduction of generalized hypergeometric functions from Feynman diagrams: one-variable case. Nuclear Phys. B 836(3), 129–170 (2010)

    Article  MathSciNet  Google Scholar 

  36. M.Yu. Kalmykov, B.A. Kniehl, Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions. Phys. Lett. B 714(1), 103–109 (2012)

    Article  MathSciNet  Google Scholar 

  37. M.Yu. Kalmykov, B.A. Kniehl, Counting the number of master integrals for sunrise diagrams via the Mellin-Barnes representation. J. High Energy Phys. 2017(7), 031 (2017). front matter+27

    Google Scholar 

  38. M.Yu. Kalmykov, B.A. Kniehl, Counting master integrals: integration by parts vs. differential reduction. Phys. Lett. B 702(4), 268–271 (2011)

    Google Scholar 

  39. V.A. Smirnov, Analytic tools for Feynman integrals, in Springer Tracts in Modern Physics, vol. 250 (Springer, Heidelberg, 2012)

    Book  Google Scholar 

  40. R.N. Lee, A.V. Smirnov, V.A. Smirnov, Solving differential equations for Feynman integrals by expansions near singular points. J. High Energy Phys. 2018(3), 008 (2018). front matter+14

    Google Scholar 

  41. J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55(11), 112301, 57 (2014)

    Google Scholar 

  42. S.L. Ziglin, Branching of solutions and nonexistence of first integrals in hamiltonian mechanics. I, Function. Analy. Appl. 16(3), 181–189 (1982)

    Google Scholar 

  43. R.C. Churchill, D.L. Rod, On the determination of Ziglin monodromy groups. SIAM J. Math. Anal. 22(6), 1790–1802 (1991)

    Article  MathSciNet  Google Scholar 

  44. V. Salnikov, Effective algorithm of analysis of integrability via the Ziglin’s method. J. Dyn. Control Syst. 20(4), 465–474 (English) (2014)

    Google Scholar 

  45. J.-J. Morales-Ruiz, J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I, II. Methods Appl. Anal. 8(1), 33–95, 97–111 (2001)

    Google Scholar 

  46. J.-J. Morales-Ruiz, J.-P. Ramis, C. Simo, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Ann. Sci. École Norm. Sup. 40(6), 845–884 (2007)

    Article  MathSciNet  Google Scholar 

  47. M. Ayoul, N. Tien Zung, Galoisian obstructions to non-Hamiltonian integrability. C. R. Math. Acad. Sci. Paris 348(23–24), 1323–1326 (2010)

    Article  MathSciNet  Google Scholar 

  48. A. Tsygvintsev, The meromorphic non-integrability of the three-body problem. J. Reine Angew. Math. 537, 127–149 (2001)

    MathSciNet  MATH  Google Scholar 

  49. D. Boucher, J.-A. Weil, Application of J.-J. Morales and J.-P. Ramis’ theorem to test the non-complete integrability of the planar three-body problem, in From Combinatorics to Dynamical Systems. EMS IRMA Lectures in Mathematics and Theoretical Physics, vol. 3 (de Gruyter, Berlin, 2003), pp. 163–177

    Google Scholar 

  50. J.-J. Morales-Ruiz, S. Simon, On the meromorphic non-integrability of some N-body problems. Discrete Contin. Dyn. Syst. 24(4), 1225–1273 (2009)

    Article  MathSciNet  Google Scholar 

  51. T. Combot, Non-integrability of the equal mass n-body problem with non-zero angular momentum. Celestial Mech. Dynam. Astronom. 114(4), 319–340 (2012)

    Article  MathSciNet  Google Scholar 

  52. J.-J. Morales-Ruiz, C. Simó, S. Simon, Algebraic proof of the non-integrability of Hill’s problem. Ergodic Theory Dynam. Syst. 25(4), 1237–1256 (2005)

    Article  MathSciNet  Google Scholar 

  53. A. Aparicio-Monforte, J.-A. Weil, A reduced form for linear differential systems and its application to integrability of Hamiltonian systems. J. Symb. Comput. 47(2), 192– 213 (2012)

    Article  MathSciNet  Google Scholar 

  54. O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon, J.-A. Weil, Swinging Atwood Machine: experimental and numerical results, and a theoretical study. Physica D: Nonlinear Phenomena 239(12), 1067–1081 (2010)

    Article  MathSciNet  Google Scholar 

  55. J.-J. Morales-Ruiz, A differential Galois approach to path integrals. J. Math. Phys. 61(5), 052103, 12 (2020)

    Google Scholar 

  56. C. Fieker, W.A. de Graaf, Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras. LMS J. Comput. Math. 10, 271–287 (2007)

    Article  MathSciNet  Google Scholar 

  57. W. Magnus, On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  Google Scholar 

  58. J. Wei, E. Norman, Lie algebraic solution of linear differential equations. J. Math. Phys. 4, 575–581 (1963)

    Article  MathSciNet  Google Scholar 

  59. J. Wei, E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 327–334 (1964)

    Article  MathSciNet  Google Scholar 

  60. D. Blázquez-Sanz, J.-J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems, in Differential Algebra, Complex Analysis and Orthogonal Polynomials. Contemporary Mathematics, vol. 509 (American Mathematical Society, Providence, 2010), pp. 1–58

    Google Scholar 

  61. A. Aparicio-Monforte, J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems, in Symmetries and Related Topics in Differential and Difference Equations, Contemporary Mathematics, vol. 549 (American Mathematical Society, Providence, 2011), pp. 1–15

    MATH  Google Scholar 

  62. M.F. Singer, Liouvillian solutions of linear differential equations with Liouvillian coefficients. J. Symb. Comput. 11(3), 251–273 (1991)

    Article  MathSciNet  Google Scholar 

  63. T. Dreyfus, J.-A. Weil, Maple worksheet with the examples for this paper: http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.mw, (2020)

  64. M.A. Barkatou, On rational solutions of systems of linear differential equations. J. Symb. Comput. 28(4–5), 547–567 (1999)

    Article  MathSciNet  Google Scholar 

  65. M.A. Barkatou, T. Cluzeau, C. El Bacha, J.-A. Weil, Computing closed form solutions of integrable connections, in Proceedings of the 36th International Symposium on Symbolic and Algebraic computation (New York, NY), ISSAC ’12 (ACM, New York, 2012)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the ANR project De Rerum Natura ANR-19-CE40-0018. We warmly thank the organizers of the conference Antidifferentiation and the Calculation of Feynman Amplitudes for stimulating exchanges and lectures. We specially thank the referee for many observations and precisions that have enhanced the quality of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques-Arthur Weil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreyfus, T., Weil, JA. (2021). Differential Galois Theory and Integration. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics