Skip to main content

A Geometrical Framework for Amplitude Recursions: Bridging Between Trees and Loops

  • Chapter
  • First Online:
  • 635 Accesses

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Various methods for the recursive evaluation of scattering amplitudes in quantum field theory and string theory have been put forward during the last couple of years. In these proceedings we describe a geometrical framework, which is believed to be capable of treating many of these recursions in a unified way. Our recursive framework is based on manipulating iterated integrals on Riemann surfaces with boundaries. A geometric parameter appears as variable of a differential equation of KZ or KZB type. The parameter interpolates between two associated regularized boundary values, which contain iterated integrals closely related to scattering amplitudes defined on two different geometries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The polynomials \(\mathcal {N}\) and \(\mathcal {D}\) are very closely related to the Symanzik polynomials.

  2. 2.

    For simplicity, we consider real integration paths here exclusively. More general quantities a, for example complex functions of complex parameters, will lead to the hyperlogarithms discussed in Erik Panzer’s talk.

  3. 3.

    We use the notation \(\prod _{x_a\leq x_i<x_j\leq x_b}=\prod _{i,j\in \{1,2,\dots ,L\}:\,x_a\leq x_i<x_j\leq x_b}\).

  4. 4.

    The limit 𝜖 → 0 is assumed to be taken within the unit interval.

References

  1. A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Phys. Rev. Lett. 105, 151605 (2010)

    Article  MathSciNet  Google Scholar 

  2. J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C. Raab, C. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018).

    Article  MathSciNet  Google Scholar 

  3. J. Brödel, C. Duhr, F. Dulat, L. Tancredi, JHEP 05, 093 (2018)

    Article  Google Scholar 

  4. A. Kotikov, Phys. Lett. B 254, 158 (1991)

    Article  MathSciNet  Google Scholar 

  5. E. Remiddi, Nuovo Cim. A 110, 1435 (1997)

    Google Scholar 

  6. T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000)

    Article  Google Scholar 

  7. J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013)

    Article  Google Scholar 

  8. G. Puhlfürst, S. Stieberger, Nucl. Phys. B 902, 186 (2016)

    Article  Google Scholar 

  9. G. Puhlfürst, S. Stieberger, Nucl. Phys. B 906, 168 (2016)

    Article  Google Scholar 

  10. A. Goncharov, Multiple Polylogarithms and Mixed Tate Motives. math/0103059[math.AG]

    Google Scholar 

  11. D. Zagier, Ann. Math. 175(2), 977 (2012)

    Article  MathSciNet  Google Scholar 

  12. C.R. Mafra, O. Schlotterer, S. Stieberger, Nucl. Phys. B 873, 419 (2013)

    Article  Google Scholar 

  13. C.R. Mafra, O. Schlotterer, S. Stieberger, Nucl. Phys. B 873, 461 (2013)

    Article  Google Scholar 

  14. J. Brödel, O. Schlotterer, S. Stieberger, Fortsch. Phys. 61, 812 (2013)

    Article  Google Scholar 

  15. G. Veneziano, Nuovo Cim. A 57, 190 (1968)

    Article  Google Scholar 

  16. S. Mandelstam, Phys. Rept. 13, 259 (1974)

    Article  Google Scholar 

  17. F. Brown, C. Dupont, Single-Valued Integration and Superstring Amplitudes in Genus Zero. arXiv:1910.01107[math.NT]

    Google Scholar 

  18. A. Selberg, Norsk Mat. Tidsskrift 26, 71 (1944)

    MathSciNet  Google Scholar 

  19. K. Aomoto, J. Math. Soc. Japan 39(2), 191 (1987)

    Article  MathSciNet  Google Scholar 

  20. T. Terasoma, Compos. Math. 133, 1 (2002)

    Article  Google Scholar 

  21. V.G. Knizhnik, A.B. Zamolodchikov, Nucl. Phys. B 247, 83 (1984)

    Article  Google Scholar 

  22. V.G. Drinfeld, Algebra i Analiz 1(6), 114 (1989)

    Google Scholar 

  23. V. Drinfeld, Leningrad Math. J. 2(4), 829 (1991)

    MathSciNet  Google Scholar 

  24. T. Le, J. Murakami, Nagoya Math J. 142, 93 (1996)

    Google Scholar 

  25. S.J. Parke, T. Taylor, Phys. Rev. Lett. 56, 2459 (1986).

    Article  Google Scholar 

  26. J. Brödel, O. Schlotterer, S. Stieberger, T. Terasoma, Phys. Rev. D 89(6), 066014 (2014)

    Article  Google Scholar 

  27. C.R. Mafra, O. Schlotterer, JHEP 01, 031 (2017)

    Article  Google Scholar 

  28. A. Kaderli, J. Phys. A 53(41), 415401 (2020)

    Article  MathSciNet  Google Scholar 

  29. A. Levin, Compos. Math. 106, 267 (1997)

    Article  Google Scholar 

  30. F. Brown, A. Levin, Multiple Elliptic Polylogarithms. arXiv:1110.6917v2 [math.NT]

    Google Scholar 

  31. A. Levin, G. Racinet, (2007). Towards Multiple Elliptic Polylogarithms. arXiv:math/0703237

    Google Scholar 

  32. D. Mumford, M. Nori, P. Norman, Tata Lectures on Theta I, II. Bd. 2 (Birkhäuser, Basel, 1983, 1984)

    Google Scholar 

  33. P. Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points, in Galois Groups Over, vol. 16, ed. by Y. Ihara, K. Ribet, J.P. Serre. Mathematical Sciences Research Institute Publications (Springer, New York, 1989), pp. 79–297

    Google Scholar 

  34. F. Brown, Motivic periods and the projective line minus three points, in Proceedings of the ICM 2014, vol. 2, ed. by S.Y. Jang Y.R. Kim, D.-W. Lee, I. Yie (2014), pp. 295–318

    Google Scholar 

  35. B. Enriquez, Bull. Soc. Math. France 144(3), 395 (2016)

    Article  MathSciNet  Google Scholar 

  36. N. Matthes, Elliptic multiple zeta values. Ph.D. thesis, Universität Hamburg, 2016

    Google Scholar 

  37. J. Brödel, C.R. Mafra, N. Matthes, O. Schlotterer, JHEP 07, 112 (2015)

    Article  Google Scholar 

  38. J. Brödel, N. Matthes, O. Schlotterer, J. Phys. A 49(15), 155203 (2016)

    Article  MathSciNet  Google Scholar 

  39. J. Brödel, N. Matthes, O. Schlotterer, https://tools.aei.mpg.de/emzv

  40. J. Brödel, A. Kaderli, Amplitude Recursions with an Extra Marked Point. arXiv:1912.09927[hep-th]

    Google Scholar 

  41. D. Bernard, Nucl. Phys. B 303, 77 (1988)

    Article  Google Scholar 

  42. D. Bernard, Nucl. Phys. B 309, 145 (1988)

    Article  Google Scholar 

  43. M.B. Green, J.H. Schwarz, L. Brink, Nucl. Phys. B 198, 474 (1982)

    Article  Google Scholar 

  44. L. Dolan, P. Goddard, Commun. Math. Phys. 285, 219 (2009)

    Article  Google Scholar 

  45. C.R. Mafra, O. Schlotterer, JHEP 03, 007 (2020)

    Article  Google Scholar 

  46. A. Klemm, C. Nega, R. Safari, JHEP 04, 088 (2020)

    Article  Google Scholar 

  47. K. Bönisch, F. Fischbach, A. Klemm, C. Nega, R. Safari, Analytic Structure of all Loop Banana Amplitudes. arXiv:2008.10574[hep-th]

    Google Scholar 

Download references

Acknowledgements

Both authors would like to thank the Kolleg Mathematik und Physik Berlin for supporting the conference “Antidifferentiation and the Calculation of Feynman Amplitudes”. AK would like to thank the IMPRS for Mathematical and Physical Aspects of Gravitation, Cosmology and Quantum Field Theory, of which he is a member and which renders his studies possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Broedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Broedel, J., Kaderli, A. (2021). A Geometrical Framework for Amplitude Recursions: Bridging Between Trees and Loops. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics