Skip to main content

N =  4 SYM Gauge Theories: The 2 → 6 Amplitude in the Regge Limit

  • Chapter
  • First Online:
Anti-Differentiation and the Calculation of Feynman Amplitudes

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

  • 704 Accesses

Abstract

In this contribution we discuss the Regge limit of scattering amplitudes in N =  4 SYM in the planar approximation. The analysis is based upon unitarity and energy discontinuities, and the analytic structure plays a vital role. We first summarize the lessons learned from the study of the remainder functions of the 2 → 4 and the 2 → 5 scattering amplitudes and then present new results for the 2 → 6 amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Bern, L.J. Dixon, V.A. Smirnov, Phys. Rev. D 72 (2005) 085001. [hep-th/0505205]

    Article  MathSciNet  Google Scholar 

  2. J. Bartels, L.N. Lipatov, A. Sabio Vera, Phys. Rev. D 80 (2009) 045002. [arXiv:0802.2065 [hep-th]]

    Google Scholar 

  3. J. Bartels, L.N. Lipatov, A. Sabio Vera, Eur. Phys. J. C 65 (2010) 587. [arXiv:0807.0894 [hep-th]]

    Google Scholar 

  4. J. Bartels, A. Kormilitzin, L. Lipatov, Phys. Rev. D 89 (2014) 065002. [arXiv:1311.2061 [hep-th]]

    Google Scholar 

  5. J. Bartels, A. Kormilitzin, L.N. Lipatov, Phys. Rev. D 91, 045005 (2015). arXiv:1411.2294 [hep-th]

    Article  MathSciNet  Google Scholar 

  6. J. Bartels, A. Kormilitzin, L.N. Lipatov, A. Prygarin, Phys. Rev. D 86, 065026 (2012). https://doi.org/10.1103/PhysRevD.86.065026. [arXiv:1112.6366 [hep-th]]

    Article  Google Scholar 

  7. T. Bargheer, G. Papathanasiou, V. Schomerus, JHEP 1605, 012 (2016). [arXiv:1512.07620 [hep-th]]

    Article  Google Scholar 

  8. V. Del Duca, S. Druc, J. Drummond, C. Duhr, F. Dulat, R. Marzucca, G. Papathanasiou, B. Verbeek, JHEP 1806, 116 (2018). [arXiv:1801.10605 [hep-th]]

    Article  Google Scholar 

  9. V. Del Duca, C. Duhr, F. Dulat, B. Penante, JHEP 1901, 162 (2019). [arXiv:1811.10398 [hep-th]]

    Article  Google Scholar 

  10. S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod, G. Papathanasiou, JHEP 1908, 016 (2019). [arXiv:1903.10890 [hep-th]]

    Article  Google Scholar 

  11. T. Bargheer, V. Chestnov, V. Schomerus, JHEP 05, 002 (2020). [arXiv:1906.00990 [hep-th]]

    Article  Google Scholar 

  12. V. Del Duca, S. Druc, J.M. Drummond, C. Duhr, F. Dulat, R. Marzucca, G. Papathanasiou, B. Verbeek, Phys. Rev. Lett. 124(16), 161602 (2020). [arXiv:1912.00188 [hep-th]]

    Google Scholar 

  13. S. Caron-Huot, L.J. Dixon, J.M. Drummond, F. Dulat, J. Foster, Ö. Gürdoğan, M. von Hippel, A.J. McLeod, G. Papathanasiou, PoS CORFU2019, 003 (2020). [arXiv:2005.06735 [hep-th]]

    Google Scholar 

  14. B. Basso, L.J. Dixon, G. Papathanasiou, Phys. Rev. Lett. 124(16), 161603 (2020). [arXiv:2001.05460 [hep-th]]

    Google Scholar 

  15. L.N. Lipatov, J. Phys. A 42, 304020 (2009). [arXiv:0902.1444 [hep-th]]

    Article  MathSciNet  Google Scholar 

  16. O. Steinmann, Helv. Physica. Acta 33, 257 (1960); Helv. Physica. Acta 33, 347 (1960)

    MathSciNet  Google Scholar 

  17. L.N. Lipatov, Theor. Math. Phys. 170, 166 (2012) [arXiv:1008.1015 [hep-th]]

    Google Scholar 

  18. L.N. Lipatov, A. Prygarin, Phys. Rev. D 83, 125001 (2011). [arXiv:1011.2673 [hep-th]]

    Article  Google Scholar 

  19. J. Bartels, L.N. Lipatov, A. Prygarin, Phys. Lett. B 705, 507–512 (2011). [arXiv:1012.3178 [hep-th]]

    Google Scholar 

  20. M. Sprenger, JHEP 01, 035 (2017). https://doi.org/10.1007/JHEP01(2017)035. [arXiv:1610.07640 [hep-th]]

    Article  MathSciNet  Google Scholar 

  21. J. Bartels (2020). [arXiv:2005.08818 [hep-th]]

    Google Scholar 

  22. T. Bargheer, J. Bartels, in preparation

    Google Scholar 

  23. J. Bartels, V.S. Fadin, L.N. Lipatov, G.P. Vacca, Nucl. Phys. B 867, 827–854 (2013). [arXiv:1210.0797 [hep-ph]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Bartels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartels, J. (2021). N =  4 SYM Gauge Theories: The 2 → 6 Amplitude in the Regge Limit. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics