Skip to main content

Some Steps Towards Improving IBP Calculations and Related Topics

  • Chapter
  • First Online:
Anti-Differentiation and the Calculation of Feynman Amplitudes

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

A number of aspects of IBP reductions are discussed, indicating some of the major bottlenecks. Potential future developments are indicated, including some in the realm of mathematics and computer algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.G. Chetyrkin, F.V. Tkachov, Integration by parts: The algorithm to calculate beta functions in 4 loops. Nucl. Phys. B192, 159 (1981)

    Article  Google Scholar 

  2. S.G. Gorishny, A.L. Kataev, S.A. Larin, The \(\mathcal {O}(\alpha _S^3)\)-corrections to σ tot(e + e → hadrons) and Γ(τ → ν τ + hadrons) in QCD. Phys. Lett. B212, 238 (1988); ibid. B259, 144 (1991)

    Google Scholar 

  3. J.A.M. Vermaseren, New features of FORM. arXiv:math-ph/0010025

    Google Scholar 

  4. B.Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2, e-print arXiv:1707.06453(hep-ph)

    Google Scholar 

  5. S.G. Gorishny, S.A. Larin, F.V. Tkachov, INR preprint P-0330 (Moscow, 1984)

    Google Scholar 

  6. S.G. Gorishny, S.A. Larin, L.R. Surguladze, F.V. Tkachov, Mincer: Program for multiloop calculations in quantum field theory for the schoonschip system. Comput. Phys. Commun. 55, 381 (1989)

    Article  Google Scholar 

  7. S.A. Larin, F.V. Tkachov, J.A.M. Vermaseren, The FORM version of MINCER, Nikhef report NIKHEF-H-91-18

    Google Scholar 

  8. B. Ruijl, T. Ueda, J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams. Comput. Phys. Commun. 253, 107198 (2020)

    Article  MathSciNet  Google Scholar 

  9. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087–5159 (2000)

    MathSciNet  MATH  Google Scholar 

  10. A.V. Smirnov, Algorithm FIRE – Feynman integral REduction. JHEP 10, 107 (2008)

    Article  Google Scholar 

  11. C. Studerus, Reduze-Feynman integral reduction in C++. Comput. Phys. Commun. 181, 1293–1300 (2010)

    Article  MathSciNet  Google Scholar 

  12. A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman integral reduction. e-Print: arXiv:1201.4330 [hep-ph]

    Google Scholar 

  13. P. Maierher, J. Usovitsch, P. Uwer, Kira-A Feynman integral reduction program. Comput. Phys. Commun. 230, 99–112 (2018)

    Article  Google Scholar 

  14. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Order alpha**4(s) QCD corrections to Z and tau decays. Phys. Rev. Lett. 101, 012002 (2008)

    Article  Google Scholar 

  15. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant. Phys. Rev. Lett. 118(8), 082002 (2017

    Google Scholar 

  16. R.N. Lee, Presenting LiteRed: a tool for the loop InTEgrals REDuction. e-Print: arXiv:1212.2685 [hep-ph]

    Google Scholar 

  17. R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals. J. Phys. Conf. Ser. 523, 012059 (2014)

    Google Scholar 

  18. M. Veltman, An IBM-7090 Program for Symbolic Evaluation Of Algebraic Expressions, Especially Feynman Diagrams. CERN preprint (1965)

    Google Scholar 

  19. H. Strubbe, ‘Manual for schoonschip: A CDC 6000/7000 program for symbolic evaluation of algebraic expressions. Comput. Phys. Commun. 8, 1 (1974)

    Article  Google Scholar 

  20. R.N. Lee, A.V. Smirnov, V.A. Smirnov, Master integrals for four-loop massless propagators up to transcendentality weight twelve. Nucl. Phys. B856, 95–110 (2012)

    Article  Google Scholar 

  21. S.O. Moch, Talk in this workshop

    Google Scholar 

  22. T. Kaneko, A Feynman graph generator for any order of coupling constants. Comput. Phys. Commun. 92, 127–152 (1995)

    Article  Google Scholar 

  23. F.V. Tkachov, An algorithm for calculating multiloop integrals. Teor. Mat. Fiz. 56, 350 (1983)

    MathSciNet  Google Scholar 

  24. K.G. Chetyrkin, F.V. Tkachov, Infrared R operation and ultraviolet counterterms in the MS scheme. Phys. Lett. B114, 340 (1982)

    Article  Google Scholar 

  25. K.G. Chetyrkin, V.A. Smirnov, R* operation corrected. Phys. Lett. B144, 419 (1984)

    Article  Google Scholar 

  26. V.A. Smirnov, K.G. Chetyrkin, R* operation in the minimal subtraction scheme. Theor. Math. Phys. 63, 462 (1985)

    Article  MathSciNet  Google Scholar 

  27. K.G. Chetyrkin, Combinatorics of R-, R-1-, and R*-operations and asymptotic expansions of feynman integrals in the limit of large momenta and masses. arXiv:1701.08627

    Google Scholar 

  28. F. Herzog, B. Ruijl, The R*-operation for Feynman graphs with generic numerators. JHEP 05, 037 (2017)

    Article  MathSciNet  Google Scholar 

  29. J. Blümlein, D. Broadhurst, J.A.M. Vermaseren, The multiple zeta value data mine. Comput. Phys. Commun. 181, 582–625 (2010). e-Print: arXiv:0907.2557 [math-ph]

    Google Scholar 

  30. D.J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity. Eur. Phys. J. C 8, 311–333 (1999). e-Print: arXiv:hep-th/9803091 [hep-th]

    Google Scholar 

  31. F. Brown, On the decomposition of motivic multiple zeta values. e-Print: arXiv:1102.1310 [math.NT]

    Google Scholar 

  32. J.M. Borwein, D.M. Bradley, D.J. Broadhurst, Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353, 907–941 (2001). e-Print: arXiv:math/9910045 [math.CA]

    Google Scholar 

  33. O. Schnetz: Private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. M. Vermaseren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vermaseren, J.A.M. (2021). Some Steps Towards Improving IBP Calculations and Related Topics. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics