Skip to main content

Holonomic Anti-Differentiation and Feynman Amplitudes

  • Chapter
  • First Online:
Anti-Differentiation and the Calculation of Feynman Amplitudes

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Computer algebra methods within the scope of the holonomic systems approach provide a versatile toolbox to integration problems in the context of Feynman diagrams. This is demonstrated with the aid of several benchmark problems, ranging from hypergeometric series evaluations to Bessel integrals of sunrise diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Kashiwara, T. Kawai, Commun. Math. Phys. 54, 121 (1977). https://doi.org/10.1007/BF01614133

    Article  Google Scholar 

  2. F.V. Tkachov, Nucl. Instrum. Meth. A389, 309 (1997). https://doi.org/10.1016/S0168-9002(97)00110-1

    Article  Google Scholar 

  3. A.V. Smirnov, A.V. Petukhov, Lett. Math. Phys. 97, 37 (2011). https://doi.org/10.1007/s11005-010-0450-0

    Article  MathSciNet  Google Scholar 

  4. T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, Lett. Math. Phys. 109(3), 497 (2019). https://doi.org/10.1007/s11005-018-1114-8

    Article  MathSciNet  Google Scholar 

  5. D. Zeilberger, J. Comput. Appl. Math. 32(3), 321 (1990)

    Article  MathSciNet  Google Scholar 

  6. O.V. Tarasov, Nucl. Instrum. Meth. A534, 293 (2004). https://doi.org/10.1016/j.nima.2004.07.104

    Article  Google Scholar 

  7. V.P. Gerdt, Nucl. Phys. Proc. Suppl. 135, 232 (2004). https://doi.org/10.1016/j.nuclphysbps.2004.09.011

    Article  Google Scholar 

  8. A.V. Smirnov, JHEP 04, 026 (2006). https://doi.org/10.1088/1126-6708/2006/04/026

    Article  Google Scholar 

  9. C. Koutschan, Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2009)

    Google Scholar 

  10. C. Koutschan, HolonomicFunctions (user’s guide). Tech. Rep. 10-01, RISC Report Series, Linz, Austria (2010). http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  11. C. Koutschan, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, ed. by C. Schneider, J. Blümlein. Texts & Monographs in Symbolic Computation (Springer, Wien, 2013), pp. 171–194

    Google Scholar 

  12. F. Chyzak, The ABC of creative telescoping. Habilitation a diriger des recherches (HDR) (2014). http://specfun.inria.fr/chyzak/Chyzak-2014-ABC.pdf

  13. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck, Austria (1965)

    Google Scholar 

  14. A. Kandri-Rody, V. Weispfenning, J. Symb. Comput. 9(1), 1 (1990)

    Article  Google Scholar 

  15. S.C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts, vol. 33 (Cambridge University Press, 1995)

    Google Scholar 

  16. F. Chyzak, Discrete Math. 217(1-3), 115 (2000). https://doi.org/10.1016/S0012-365X(99)00259-9

    Article  MathSciNet  Google Scholar 

  17. C. Koutschan, Math. Comp. Sci. 4(2-3), 259 (2010). https://doi.org/10.1007/s11786-010-0055-0

    Article  MathSciNet  Google Scholar 

  18. D. Zeilberger, J. Symb. Comput. 11, 195 (1991)

    Article  Google Scholar 

  19. A.I. Davydychev, M.Y. Kalmykov, Nucl. Phys. B 605, 266 (2001)

    Article  Google Scholar 

  20. P.W. Karlsson, J. Math. Anal. Appl. 196(1), 172 (1995)

    Article  MathSciNet  Google Scholar 

  21. C. Krattenthaler, J. Symb. Comput. 20, 737 (1995)

    Article  Google Scholar 

  22. V.V. Bytev, M.Y. Kalmykov, S.O. Moch, Comput. Phys. Commun. 185, 3041 (2014)

    Article  Google Scholar 

  23. D.T. Barfoot, D.J. Broadhurst, Z. Phys. C41, 81 (1988). https://doi.org/10.1007/BF01412581

    Google Scholar 

  24. A.G. Grozin, Int. J. Mod. Phys. A27, 1230018 (2012). https://doi.org/10.1142/S0217751X12300189

    Article  MathSciNet  Google Scholar 

  25. A.V. Kotikov, S. Teber, Phys. Part. Nucl. 50(1), 1 (2019). https://doi.org/10.1134/S1063779619010039

    Article  Google Scholar 

  26. A.V. Kotikov, S. Teber, Teor. Mat. Fiz. 194(2), 331 (2018). https://doi.org/10.4213/tmf9340

    Article  Google Scholar 

  27. A. Ebisu, Special values of the hypergeometric series. Tech. Rep., arXiv:1308.5588 (2013)

    Google Scholar 

  28. F. Beukers, J. Forsgård, Γ-evaluations of hypergeometric series. Tech. Rep., arXiv:2004.08117 (2020)

    Google Scholar 

  29. T. Regge, E.R. Speer, M.J. Westwater, Fortsch. Phys. 20, 365 (1972). https://doi.org/10.1002/prop.19720200603

    Article  Google Scholar 

  30. S. Friot, D. Greynat, E. De Rafael, Phys. Lett. B628, 73 (2005). https://doi.org/10.1016/j.physletb.2005.08.126

    Article  Google Scholar 

  31. J.P. Aguilar, D. Greynat, E. De Rafael, Phys. Rev. D77, 093010 (2008). https://doi.org/10.1103/PhysRevD.77.093010

    Google Scholar 

  32. S. Bekavac, A.G. Grozin, D. Seidel, V.A. Smirnov, Nucl. Phys. B819, 183 (2009). https://doi.org/10.1016/j.nuclphysb.2009.04.015

    Article  Google Scholar 

  33. R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, JHEP 03, 162 (2013). https://doi.org/10.1007/JHEP03(2013)162

    Article  Google Scholar 

  34. G. Ponzano, T. Regge, E.R. Speer, M.J. Westwater, Commun. Math. Phys. 15, 83 (1969). https://doi.org/10.1007/BF01645374

    Article  Google Scholar 

  35. P. Aluffi, M. Marcolli, Commun. Num. Theor. Phys. 3, 1 (2009). https://doi.org/10.4310/CNTP.2009.v3.n1.a1

    Article  Google Scholar 

  36. D.J. Broadhurst, Z. Phys. C47, 115 (1990). https://doi.org/10.1007/BF01551921

    Google Scholar 

  37. D.J. Broadhurst, Eur. Phys. J. C8, 311 (1999). https://doi.org/10.1007/s100529900935

    Article  MathSciNet  Google Scholar 

  38. F.A. Berends, M. Buza, M. Bohm, R. Scharf, Z. Phys. C63, 227 (1994). https://doi.org/10.1007/BF01411014

    Google Scholar 

  39. D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Z. Phys. C 60, 287 (1993)

    Google Scholar 

  40. J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018). https://doi.org/10.1063/1.4986417

    Article  MathSciNet  Google Scholar 

  41. S. Abreu, M. Becchetti, C. Duhr, R. Marzucca, JHEP 02, 050 (2020). https://doi.org/10.1007/JHEP02(2020)050

    Article  Google Scholar 

  42. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44(1), 189 (1972)

    Google Scholar 

  43. E. Mendels, Il Nuovo Cimento A 45, 87 (1978). https://doi.org/10.1007/BF02729917

    Article  MathSciNet  Google Scholar 

  44. D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, J. Phys. A41, 205203 (2008). https://doi.org/10.1088/1751-8113/41/20/205203

    Google Scholar 

  45. J.M. Borwein, B. Salvy, Exp. Math. 17, 223 (2011). https://doi.org/10.1080/10586458.2008.10129032

    Article  Google Scholar 

  46. D. Broadhurst, D.P. Roberts, in PoS LL2018, 053 (2018). https://doi.org/10.22323/1.303.0053

  47. R.N. Lee, A.A. Pomeransky, JHEP 08, 027 (2019). https://doi.org/10.1007/JHEP08(2019)027

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Johannes Blümlein and Carsten Schneider for organizing the WPC workshop on “Anti-Differentiation and the Calculation of Feynman Amplitudes” at DESY Zeuthen, despite the difficult circumstances due to the corona pandemic. We are extremely grateful to Mikhail Kalmykov for providing us with this list of challenge problems and for many references. The discussions with him during the workshop enlightened the physics background of these computational tasks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Koutschan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koutschan, C. (2021). Holonomic Anti-Differentiation and Feynman Amplitudes. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics