Advertisement

Naming Processes in Multichannels with Beeps in the Weak Model

Conference paper
  • 165 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 283)

Abstract

A system of processes is examined that communicate with beeps in multiple channels. In the beeping model, the processes have limited communication where they can detect the presence of a signal (beep), or its absence (silence). In the weak model, the processes can choose to transmit a beep on one or more channels and can detect beeps and/or silence on all channels. The processes are anonymous and they begin without names to identify themselves. The objective is to develop distributed naming algorithms for two models when n is either known or unknown, where n is the number of processes. The Multichannel Many Beeps Naming algorithm is a Las Vegas algorithm developed for the model when n is known and that has an optimal time complexity of \(\mathcal {O}{(\log {n})}\) rounds. When n is unknown, a Monte Carlo algorithm was developed, called the Unknown Multichannel Many Beeps Naming. It has an optimal time complexity of \(\mathcal {O}(\log {n})\) rounds and a probability of success that is at least \(1-(n\log {n})^{-1}\). These algorithms show an asymptotic improvement when compared to the existing naming algorithms for this model.

Keywords

Naming algorithm Distributed naming Beeping channels Anonymous processes 

References

  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24100-0_3CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aldawsari, L.S., Altman, T.: Naming in multichannel with beeps in the strong model. Appl. Sci. 10(20), 7164 (2020)CrossRefGoogle Scholar
  4. 4.
    Andriambolamalala, N.A., Ravelomanana, V.: Energy efficient naming in beeping networks. In: Palattella, M.R., Scanzio, S., Coleri Ergen, S. (eds.) ADHOC-NOW 2019. LNCS, vol. 11803, pp. 355–369. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-31831-4_25CrossRefGoogle Scholar
  5. 5.
    Andriambolamalala, N.A., Ravelomanana, V.: Fault-tolerant energy efficient consensus on ad hoc beeping networks (2020)Google Scholar
  6. 6.
    Angluin, D.: Local and global properties in networks of processors (extended abstract). In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC 1980, pp. 82–93. ACM (1980)Google Scholar
  7. 7.
    Beauquier, J., Burman, J., Davies, P., Dufoulon, F.: Optimal multi-broadcast with beeps using group testing. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 66–80. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-24922-9_5CrossRefGoogle Scholar
  8. 8.
    Bordim, J.L., Cui, J., Ishii, N., Nakano, K.: Doubly-logarithmic energy-efficient initialization protocols for single-hop radio networks. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium, IPDPS 2002, USA, p. 123. IEEE Computer Society (2002)Google Scholar
  9. 9.
    Brandes, P., Kardas, M., Klonowski, M., Pająk, D., Wattenhofer, R.: Approximating the size of a radio network in beeping model. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 358–373. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_23CrossRefGoogle Scholar
  10. 10.
    Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of having an identity or, is consensus really universal? Distrib. Comput. 18(3), 167–176 (2006)CrossRefGoogle Scholar
  11. 11.
    Chlebus, B.S., De Marco, G., Talo, M.: Naming a channel with beeps. Fund. Inform. 153(3), 199–219 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_15CrossRefGoogle Scholar
  13. 13.
    Czumaj, A., Davies, P.: Communicating with beeps. J. Parallel Distrib. Comput. 130, 98–109 (2019)CrossRefGoogle Scholar
  14. 14.
    Dufoulon, F., Burman, J., Beauquier, J.: Beeping a deterministic time-optimal leader election. In: 32nd International Symposium on Distributed Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  15. 15.
    Efremenko, K., Kol, G., Saxena, R.R.: Noisy beeps. In: Proceedings of the 39th Symposium on Principles of Distributed Computing, PODC 2020, pp. 418–427. Association for Computing Machinery, New York (2020)Google Scholar
  16. 16.
    Eǧecioǧlu, Ö., Singh, A.K.: Naming symmetric processes using shared variables. Distrib. Comput. 8(1), 19–38 (1994)CrossRefGoogle Scholar
  17. 17.
    Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-hop beeping networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 212–226. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_15CrossRefGoogle Scholar
  18. 18.
    Kutten, S., Ostrovsky, R., Patt-Shamir, B.: The las-vegas processor identity problem (how and when to be unique). J. Algorithms 37(2), 468–494 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lipton, R.J., Park, A.: The processor identity problem. Inf. Process. Lett. 36(2), 91–94 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Myoupo, J.F.: Dynamic initialization protocols for mobile ad hoc networks. In: The 11th IEEE International Conference on Networks, ICON 2003, pp. 149–154, October 2003Google Scholar
  21. 21.
    Nakano, K., Olariu, S.: Energy-efficient initialization protocols for radio networks with no collision detection. In: Proceedings 2000 International Conference on Parallel Processing, pp. 263–270, August 2000Google Scholar
  22. 22.
    Nakano, K., Olariu, S.: Randomized initialization protocols for ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 11(7), 749–759 (2000)CrossRefGoogle Scholar
  23. 23.
    Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and computational systems. Commun. ACM 58(1), 94–102 (2014)CrossRefGoogle Scholar
  24. 24.
    Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitányi, P.: Randomized naming using wait-free shared variables. Distrib. Comput. 11(3), 113–124 (1998)CrossRefGoogle Scholar
  25. 25.
    Schneider, J., Wattenhofer, R.: What is the use of collision detection (in wireless networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–147. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_14CrossRefGoogle Scholar
  26. 26.
    Teng, S.-H.: Space efficient processor identity protocol. Inf. Process. Lett. 34(3), 147–154 (1990)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Toh, C.-K.: Ad Hoc Mobile Wireless Networks Protocols and Systems. Prentice Hall PTR, Hoboken (2002)Google Scholar
  28. 28.
    Yao, A.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pp. 222–227 (1977)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of Colorado DenverDenverUSA
  2. 2.College of Computer and Information SciencesPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia

Personalised recommendations