Skip to main content

Self-adaptive Perception Model for Action Segment Detection

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 283))

  • 2357 Accesses

Abstract

Action segment detection is an important yet challenging problem, since we need to localize the proposals which contain an action instance in a long untrimmed video with arbitrary length and random position. This task requires us not only to find the precise moment of starting and ending of an action instance, but also to detect action instances as many as possible. We propose a new model Self-Adaptive Perception to address this problem. We predict the action boundaries by classifying start and end of each action as separate components, allowing our model to predict the starting and ending boundaries roughly and generate candidate proposals. We evaluate each candidate proposals by a novel and flexible architecture called Discriminator. It can extract enough semantic information and generate precise confidence score of whether a proposal contains an action within its region, which benefit from the self-adaptive architecture. We conduct solid and rich experiments on large dataset Activity-Net, the result shows that our method achieves a competitive performance, outperforming most published state-of-the-art method in the field. And further experiments demonstrate the effect of each module of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buch, S., Escorcia, V., Shen, C., Ghanem, B., Niebles, J.C: Sst: single-stream temporal action proposals. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2911–2920 (2017)

    Google Scholar 

  2. Dai, X., Singh, B., Zhang, G., Davis, L.S., Chen, Y.Q.: Temporal context network for activity localization in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5793–5802 (2017)

    Google Scholar 

  3. Escorcia, V., Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Daps: deep action proposals for action understanding. In: European Conference on Computer Vision, pp. 768–784. Springer (2016)

    Google Scholar 

  4. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  5. Gao, J., Chen, K., Nevatia, R.: Ctap: complementary temporal action proposal generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 68–83 (2018)

    Google Scholar 

  6. Gao, J., Yang, Z., Chen, K., Sun, C., Nevatia, R.: Turn tap: temporal unit regression network for temporal action proposals. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3628–3636 (2017)

    Google Scholar 

  7. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1243–1252. JMLR. org (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Lin, T., Zhao, X., Shou, Z.: Temporal convolution based action proposal: Submission to activitynet (2017). arXiv preprint arXiv:1707.06750 (2017)

  12. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: Bsn: boundary sensitive network for temporal action proposal generation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  14. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage cnns. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp. 568–576 (2014)

    Google Scholar 

  16. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  18. Wang, L., Xiong, Y., Wang, Z., Qiao, Y.: Towards good practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159 (2015)

  19. Wang, L., et al.: Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2740–2755 (2018)

    Google Scholar 

  20. Yao, T., et al.: Msr asia msm at activitynet challenge 2017: trimmed action recognition, temporal action proposals and dense captioning events in videos. In: CVPR ActivityNet Challenge Workshop (2017)

    Google Scholar 

Download references

Acknowledgments

This research is supported by Beijing Natural Science Foundation (No. L181010 and 4172054), National Key R&D Program of China (No. 2016YFB0801100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Li, K., Niu, X. (2022). Self-adaptive Perception Model for Action Segment Detection. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_54

Download citation

Publish with us

Policies and ethics