Advertisement

Resolution of the Frobenius Problem with an Adiabatic Quantum Computer

Conference paper
  • 67 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 283)

Abstract

The (Diophantine) Frobenius problem is a well-known NP-hard problem (also called the stamp problem or the chicken nugget problem) whose origins lie in the realm of combinatorial number theory. In this paper we present an algorithm which solves it, via a translation into a QUBO problem of the so-called Apéry set of a numerical semigroup. This algorithm was specifically designed to run in an adiabatic quantum computer (a D-Wave 2X machine), and the performance problems for this precise setting are also discussed.

Keywords

Quantum computation Adiabatic quantum computation Numerical semigroups Frobenius problem 

References

  1. 1.
    Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). In: Luminy Conference on Arithmetic. Astérisque, vol. 61, pp. 11–13 (1979)Google Scholar
  3. 3.
    Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 32–41 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boixo, S., et al.: Quantum annealing with more than one hundred qubits. arXiv preprint arXiv:1304.4595 (2013)
  5. 5.
    Boot, M., Reinhardt, S., Roy, A.: Partitioning optimization problems for hybrid classical/quantum execution. Technical report, D-Wave Systems, Inc. (2017)Google Scholar
  6. 6.
    Brauer, A.: On a problem of partitions. Am. J. Math. 64, 299–312 (1942)CrossRefGoogle Scholar
  7. 7.
    Brauer, A., Shockley, J.E.: On a problem of Frobenius. J. Reine Angew. Math. 211, 215–220 (1962)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)Google Scholar
  9. 9.
    Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D-Wave Systems Inc: D-Wave: Programming with QUBOs. Release 1.5.1-beta4, 09-1002A-B (2016)Google Scholar
  11. 11.
    D-Wave Systems Inc: D-Wave: Programming with QUBOs. Release 2.3, 09-1002A-B (2016)Google Scholar
  12. 12.
    Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Manag. Sci. 36(5), 519–554 (1990)CrossRefGoogle Scholar
  13. 13.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press (2002)Google Scholar
  14. 14.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Greenberg, H.: An algorithm for a linear Diophantine equation and a problem of Frobenius. Numer. Math. 34(4), 349–352 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com. Accessed 23 Feb 2019
  17. 17.
    Ising, E.: Report on the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925)CrossRefGoogle Scholar
  18. 18.
    Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011)CrossRefGoogle Scholar
  19. 19.
    McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synth. Lect. Quantum Comput. 5(2), 1–93 (2014)CrossRefGoogle Scholar
  20. 20.
    Ossorio-Castillo, J.: jqnoc/numsem: numsem console (2018). https://doi.org/10.5281/zenodo.1257967
  21. 21.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1998)Google Scholar
  22. 22.
    Ramírez-Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ramírez-Alfonsín, J.L.: The Diophantine Frobenius problem. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  24. 24.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer, New York (2009).  https://doi.org/10.1007/978-1-4419-0160-6CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.Departamento de ÁlgebraUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Álgebra – IMUSUniversidad de SevillaSevillaSpain

Personalised recommendations