Orca: A Software Library for Parallel Computation of Symbolic Expressions via Remote Evaluation on MPI Systems

Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 283)


This study describes a Scheme library, named Orca, which is used to compute symbolic expressions in parallel via remote evaluation based on the message-passing interface (MPI) standard. Today, MPI is one of the most used standards, in particular high-performance computing systems. However, MPI programmers are explicitly required to deal with many complexities that render MPI programming hard to reason about. We designed and implemented a set of new APIs to alleviate this complexity by taking advantage of the expressive power of Scheme language using remote evaluation techniques on MPI systems. We introduce the application programming interface (API) of the library and evaluate the implemented model on a real-world application of a common parallel algorithm. Our experiments show that it is practical and useful for a variety of applications to exploit multiple processors of a distributed-memory architecture.


Parallel computation Symbolic expression Remote evaluation MPI Message-Passing Interface Scheme 


  1. 1.
    Brown, J.R., Nelson, E.C.: Functional programming. Technical report, TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CALIF (1978)Google Scholar
  2. 2.
    Clamen, S.M., Leibengood, L.D., Nettles, S.M., Wing, J.M.: Reliable distributed computing with avalon/common lisp. In: Proceedings 1990 International Conference on Computer Languages, pp. 169–179 (1990)Google Scholar
  3. 3.
    Dalcín, L., Paz, R., Storti, M.: MPI for python. J. Parallel Distrib. Comput. 65(9), 1108–1115 (2005)Google Scholar
  4. 4.
    Forejt, V., Joshi, S., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predictive analysis for discovering communication deadlocks in MPI programs. ACM Trans. Program. Lang. Syst. 39(4) (2017)Google Scholar
  5. 5.
    Foster, I.: Task parallelism and high-performance languages. IEEE Parallel Distrib. Technol. Syst. Appl. 2(3), 27 (1994)Google Scholar
  6. 6.
    Free Software Foundation (2020). Accessed 21 June 2020Google Scholar
  7. 7.
    Gregor, B., Troyer, M.: (2020). Accessed 21 June 2020Google Scholar
  8. 8.
    Gropp, W., Lusk, E., Skjellum, A.: Portable Parallel Programming with the Message-Passing Interface. The MIT Press, Using MPI (2014)Google Scholar
  9. 9.
    Hammond, K.: Why parallel functional programming matters: panel statement. In International Conference on Reliable Software Technologies, pp. 201–205. Springer (2011)Google Scholar
  10. 10.
    Haque, W.: Concurrent deadlock detection in parallel programs. Int. J. Comput. Appl. 28(1), 19–25 (2006)Google Scholar
  11. 11.
    Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)Google Scholar
  12. 12.
    Jones, M.P., Hudak, P.: Implicit and explicit parallel programming in haskell. Disponível por FTP em nebula. systemsz. cs. yale. edu/pub/yale-fp/reports/RR-982. ps. Z (julho de 1999) (1993)Google Scholar
  13. 13.
    Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in MPI programs. Concurrency Comput. Pract. Exper. 14(11), 911–932 (2002)Google Scholar
  14. 14.
    McCarthy, J., Levin, M.I.: LISP 1.5 programmer’s manual. MIT Press, Cambridge (1965)Google Scholar
  15. 15.
    Message Passing Interface Forum. MPI: A message-passing interface standard, version 3.1. Specification, June 2015Google Scholar
  16. 16.
    Murthy, V.K., Krishnamurthy, E.V.: Software pattern design for cluster computing. In: Proceedings International Conference on Parallel Processing Workshop, pp. 360–367 (2002)Google Scholar
  17. 17.
    Ong, E.: MPI ruby: scripting in a parallel environment. Comput. Sci. Eng. 4(4), 78–82 (2002)Google Scholar
  18. 18.
    Peter, S.: Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1996)Google Scholar
  19. 19.
    Smith, L.A.: Mixed mode MPI/OpenMP programming. UK High-End Computing Technology Report, pp. 1–25 (2000)Google Scholar
  20. 20.
    Stamos, J.W., Gifford, D.K.: Remote evaluation. ACM Trans. Program. Lang. Syst. 12(4), 537–564 (1990)Google Scholar
  21. 21.
    Sussman, G.J., Steele, G.L.: Scheme: a interpreter for extended lambda calculus. High.-Order Symb. Comput. 11(4), 405–439 (1998)Google Scholar
  22. 22.
    Wilbur, S., Bacarisse, B.: Building distributed systems with remote procedure call. Softw. Eng. J. 2(5), 148–159 (1987)Google Scholar
  23. 23.
    Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: simple linux utility for resource management. In: Workshop on Job Scheduling Strategies for Parallel Processing, pp. 44–60. Springer (2003)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.IssaquahUSA

Personalised recommendations