Skip to main content

Explicit Integration and Implementation of State-Dependent Constitutive Model for Rockfill Materials

  • Conference paper
  • First Online:
Smart and Green Solutions for Civil Infrastructures Incorporating Geological and Geotechnical Aspects (GeoChina 2021)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

The dilatancy and stress-strain relationship of rockfill materials often depend on their material states. To better simulate the strength and deformation behaviors of rockfill materials under complex stress states, the state void-ratio index was incorporated into Rowe’s stress-dilatancy equation, bounding stress ratio, and plastic modulus. A state-dependent constitutive model was established within the framework of the critical state theory and the bounding surface plasticity theory. The proposed model can well describe the strain hardening, strain softening, and dilatancy behaviors of rockfill materials. Thereafter, the adaptive sub-stepping explicit integration algorithm was adopted in the state-dependent model and implemented into a finite element code. To validate the proposed scheme, a numerical model was established at element scale to simulate drained triaxial compression tests in a large density and pressure ranges. Comparisons between the simulation results and experimental data, the performance of the explicit integration algorithm for the state-dependent constitutive model are analyzed. The accuracy and efficiency of the explicit integration to describe the state-dependent behavior of rockfill materials is verified, which lays a foundation for further engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Article  Google Scholar 

  • Duncan, J., Chang, C.Y.: Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. 96, 1629–1653 (1970)

    Article  Google Scholar 

  • Hardin, B.O., Richart, F.E.: Elastic wave velocities in granular soils. J. Soil Mech. Found. 89(1), 33–66 (1963)

    Article  Google Scholar 

  • Hu, C., Liu, H.: Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay. Comput. Geotech. 55, 27–41 (2014)

    Article  Google Scholar 

  • Jia, Y.F., Xu, B., Chi, S.C., Xiang, B., Zhou, Y.: Research on the particle breakage of rockfill materials during triaxial tests. Int. J. Geomech. 17(10), 04017085 (2017)

    Article  Google Scholar 

  • Li, X.S., Dafalias, Y.F.: Dilatancy for cohesionless soils. Géotechnique 50(4), 449–460 (2000)

    Article  Google Scholar 

  • Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc. Lond. A 269(1339), 500–527 (1962)

    Article  Google Scholar 

  • Salim, W., Indraratna, B.: A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Can. Geotech. J. 41(4), 657–671 (2004)

    Article  Google Scholar 

  • Sheng, D.C., Sloan, S.W., Gens, A., Smith, D.W.: Finite element formulation and algorithms for unsaturated soils. Part I: theory. Int. J. Numer. Anal. Meth. Geomech. 27(9), 745–765 (2003)

    Article  Google Scholar 

  • Sloan, S.W.: Refined explicit integration of elastoplastic models with automatic error control. Eng. Comput. 18(1/2), 121–194 (2001)

    Article  MathSciNet  Google Scholar 

  • Varadarajan, A., Sharma, K.G., Abbas, S.M., Dhawan, A.K.: Constitutive model for rockfill materials and determination of material constants. Int. J. Geomech. 6(4), 226–237 (2006)

    Article  Google Scholar 

  • Wan, R.G., Guo, P.J.: A simple constitutive model for granular soils: modified stress-dilatancy approach. Comput. Geotech. 22(2), 109–133 (1998)

    Article  Google Scholar 

  • Wang, Z.L., Dafalias Yannis, F., Li, X.S., Makdisi Faiz, I.: State pressure index for modeling sand behavior. J. Geotech. Geoenviron. Eng. 128(6), 511–519 (2002)

    Article  Google Scholar 

  • Xiao, Y., Liu, H.: Elastoplastic constitutive model for rockfill materials considering particle breakage. Int. J. Geomech. 17(1), 04016041 (2017)

    Article  MathSciNet  Google Scholar 

  • Xiao, Y., Liu, H., Chen, Y., Jiang, J.: Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J. Eng. Mech. 140(4), 04014002 (2014a)

    Google Scholar 

  • Xiao, Y., Liu, H., Chen, Y., Jiang, J., Zhang, W.: Testing and modeling of the state-dependent behaviors of rockfill material. Comput. Geotech. 61(3), 153–165 (2014b)

    Google Scholar 

  • Xiao, Y., Sun, Z.C., Stuedlein, A.W., Wang, C.G., Wu, Z.J., Zhang, Z.C.: Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials. Geosci. Front. 11(2), 495–510 (2020)

    Article  Google Scholar 

  • Xu, M., Song, E.: Numerical simulation of the shear behavior of rockfills. Comput. Geotech. 36(8), 1259–1264 (2009)

    Article  Google Scholar 

  • Yao, Y., Liu, L., Luo, T.: A constitutive model for granular soils. Sci. China Technol. Sci. 61(10), 1546–1555 (2018). https://doi.org/10.1007/s11431-017-9205-8

    Article  Google Scholar 

  • Yin, Z.Y., Hicher, P.Y., Dano, C., Jin, Y.F.: Modeling mechanical behavior of very coarse granular materials. J. Eng. Mech. 143(1), C4016006 (2017)

    Article  Google Scholar 

  • Zhou, A., Zhang, Y.: Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces. Comput. Mech. 55(5), 943–961 (2015). https://doi.org/10.1007/s00466-015-1144-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Science Foundation of China (Grant No. 51678094 and Grant No. 51922024), Sponsored by Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Cui, H., Liu, H., Wang, C., Xiao, Y., Wu, H. (2021). Explicit Integration and Implementation of State-Dependent Constitutive Model for Rockfill Materials. In: Khabbaz, H., Xiao, Y., Chang, JR. (eds) Smart and Green Solutions for Civil Infrastructures Incorporating Geological and Geotechnical Aspects. GeoChina 2021. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-79650-1_7

Download citation

Publish with us

Policies and ethics