Skip to main content

Immunotherapy for Neuro-oncology

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Immunotherapy has changed the landscape of treatment of many solid and hematological malignancies and is at the forefront of cancer breakthroughs. Several circumstances unique to the central nervous system (CNS) such as limited space for an inflammatory response, difficulties with repeated sampling, corticosteroid use for management of cerebral edema, and immunosuppressive mechanisms within the tumor and brain parenchyma have posed challenges in clinical development of immunotherapy for intracranial tumors. Nonetheless, the success of immunotherapy in brain metastases (BMs) from solid cancers such as melanoma and non-small cell lung cancer (NSCLC) proves that the CNS is not an immune-privileged organ and is capable of initiating and regulating immune responses that lead to tumor control. However, the development of immunotherapeutics for the most malignant primary brain tumor, glioblastoma (GBM), has been challenging due to systemic and profound tumor-mediated immunosuppression unique to GBM, intratumoral and intertumoral heterogeneity, and lack of stably expressed clonal antigens. Here, we review recent advances in the field of immunotherapy for neuro-oncology with a focus on BM, GBM, and rare CNS cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Medawar, P. B. (1948). Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology, 29(1), 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Woodroofe, M. N., Bellamy, A. S., Feldmann, M., Davison, A. N., & Cuzner, M. L. (1986). Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. Journal of the Neurological Sciences, 74(2–3), 135–152.

    Article  CAS  PubMed  Google Scholar 

  3. Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., et al. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560), 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venur, V. A., Karivedu, V., & Ahluwalia, M. S. (2018). Systemic therapy for brain metastases. Handbook of Clinical Neurology, 149, 137–153.

    Article  PubMed  Google Scholar 

  5. Ostrom, Q. T., Wright, C. H., & Barnholtz-Sloan, J. S. (2018). Brain metastases: epidemiology. Handbook of Clinical Neurology, 149, 27–42.

    Article  PubMed  Google Scholar 

  6. Achrol, A. S., Rennert, R. C., Anders, C., Soffietti, R., Ahluwalia, M. S., Nayak, L., et al. (2019). Brain metastases. Nature Reviews Disease Primers, 5(1), 5.

    Article  PubMed  Google Scholar 

  7. Tawbi, H. A., Forsyth, P. A., Algazi, A., Hamid, O., Hodi, F. S., Moschos, S. J., et al. (2018). Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. New England Journal of Medicine, 379(8), 722–730.

    Article  CAS  Google Scholar 

  8. Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., et al. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. The Lancet Oncology, 17(7), 976–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 372(26), 2521–2532.

    Article  CAS  PubMed  Google Scholar 

  10. Hargadon, K. M., Johnson, C. E., & Williams, C. J. (2018). Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. International Immunopharmacology, 62, 29–39.

    Article  CAS  PubMed  Google Scholar 

  11. Callahan, M. K., Wolchok, J. D., & Allison, J. P. (2010). Anti-CTLA-4 antibody therapy: Immune monitoring during clinical development of a novel immunotherapy. Seminars in Oncology, 37(5), 473–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korn, E. L., Liu, P. Y., Lee, S. J., Chapman, J. A., Niedzwiecki, D., Suman, V. J., et al. (2008). Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. Journal of Clinical Oncology, 26(4), 527–534.

    Article  PubMed  Google Scholar 

  13. Callahan, M. K., Kluger, H., Postow, M. A., Segal, N. H., Lesokhin, A., Atkins, M. B., et al. (2018). Nivolumab plus Ipilimumab in patients with advanced melanoma: Updated survival, response, and safety data in a phase I dose-escalation study. Journal of Clinical Oncology, 36(4), 391–398.

    Article  CAS  PubMed  Google Scholar 

  14. Chukwueke, U., Batchelor, T., & Brastianos, P. (2016). Management of brain metastases in patients with melanoma. Journal of Oncology Practice, 12(6), 536–542.

    Article  PubMed  Google Scholar 

  15. Davies, M. A., Liu, P., McIntyre, S., Kim, K. B., Papadopoulos, N., Hwu, W. J., et al. (2011). Prognostic factors for survival in melanoma patients with brain metastases. Cancer, 117(8), 1687–1696.

    Article  PubMed  Google Scholar 

  16. Sloan, A. E., Nock, C. J., & Einstein, D. B. (2009). Diagnosis and treatment of melanoma brain metastasis: A literature review. Cancer Control, 16(3), 248–255.

    Article  PubMed  Google Scholar 

  17. Di Giacomo, A. M., Ascierto, P. A., Pilla, L., Santinami, M., Ferrucci, P. F., Giannarelli, D., et al. (2012). Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): An open-label, single-arm phase 2 trial. The Lancet Oncology, 13(9), 879–886.

    Article  PubMed  CAS  Google Scholar 

  18. Di Giacomo, A. M., Ascierto, P. A., Queirolo, P., Pilla, L., Ridolfi, R., Santinami, M., et al. (2015). Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Annals of Oncology, 26(4), 798–803.

    Article  PubMed  Google Scholar 

  19. Margolin, K., Ernstoff, M. S., Hamid, O., Lawrence, D., McDermott, D., Puzanov, I., et al. (2012). Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. The Lancet Oncology, 13(5), 459–465.

    Article  CAS  PubMed  Google Scholar 

  20. Kluger, H. M., Chiang, V., Mahajan, A., Zito, C. R., Sznol, M., Tran, T., et al. (2019). Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase II trial. Journal of Clinical Oncology, 37(1), 52–60.

    Article  CAS  PubMed  Google Scholar 

  21. Goldberg, S. B., Schalper, K. A., Gettinger, S. N., Mahajan, A., Herbst, R. S., Chiang, A. C., et al. (2020). Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. The Lancet Oncology, 21(5), 655–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borghaei, H., Pluzanski, A., Caro, R. B., Provencio, M., Burgers, S., Carcereny, E., et al. (2020). Abstract CT221: Nivolumab (NIVO) + ipilimumab (IPI) as first-line (1L) treatment for patients with advanced non-small cell lung cancer (NSCLC) with brain metastases: Results from CheckMate 227. Cancer Research, 80(16 Supplement), CT221-CT.

    Article  Google Scholar 

  23. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996.

    Article  CAS  PubMed  Google Scholar 

  24. Sanai, N., & Berger, M. S. (2008). Glioma extent of resection and its impact on patient outcome. Neurosurgery, 62(4), 753–764; discussion 264–6.

    Article  PubMed  Google Scholar 

  25. Reardon, D. A., Gokhale, P. C., Klein, S. R., Ligon, K. L., Rodig, S. J., Ramkissoon, S. H., et al. (2016). Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunology Research, 4(2), 124–135.

    Article  CAS  PubMed  Google Scholar 

  26. Fecci, P. E., Ochiai, H., Mitchell, D. A., Grossi, P. M., Sweeney, A. E., Archer, G. E., et al. (2007). Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clinical Cancer Research, 13(7), 2158–2167.

    Article  CAS  PubMed  Google Scholar 

  27. Reardon, D. A., Brandes, A. A., Omuro, A., Mulholland, P., Lim, M., Wick, A., et al. (2020). Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncology, 6(7), 1003–1010.

    Article  PubMed  Google Scholar 

  28. Rosa K. Nivolumab Plus Temozolomide/Radiotherapy Misses OS End Point in Glioblastoma Multiforme 2020. Available from: https://www.onclive.com/view/nivolumab-plus-temozolomide-radiotherapy-misses-os-end-point-in-glioblastoma-multiforme

  29. Bristol-Myers Squibb. Bristol-Myers Squibb Announces Phase 3 CheckMate -498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (nivolumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multiforme 2019, May 9. Available from: https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-announces-phase-3-checkmate-498-study-did

  30. Genoud, V., Marinari, E., Nikolaev, S. I., Castle, J. C., Bukur, V., Dietrich, P. Y., et al. (2018). Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology, 7(12), e1501137.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499(7457), 214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeung, J. T., Hamilton, R. L., Ohnishi, K., Ikeura, M., Potter, D. M., Nikiforova, M. N., et al. (2013). LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clinical Cancer Research, 19(7), 1816–1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parsa, A. T., Waldron, J. S., Panner, A., Crane, C. A., Parney, I. F., Barry, J. J., et al. (2007). Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Medicine, 13(1), 84–88.

    Article  CAS  PubMed  Google Scholar 

  34. Wainwright, D. A., Chang, A. L., Dey, M., Balyasnikova, I. V., Kim, C. K., Tobias, A., et al. (2014). Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clinical Cancer Research, 20(20), 5290–5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, N., Ahn, S. H., Kong, D. S., Lee, H. W., & Nam, D. H. (2017). The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Molecular and Cellular Endocrinology, 451, 53–65.

    Article  CAS  PubMed  Google Scholar 

  36. Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., Murray, B. A., et al. (2016). Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 164(3), 550–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Groot, J., Penas-Prado, M., Alfaro-Munoz, K., Hunter, K., Pei, B. L., O’Brien, B., et al. (2020). Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-Oncology, 22(4), 539–549.

    Article  PubMed  CAS  Google Scholar 

  38. Heimberger, A. B., Sun, W., Hussain, S. F., Dey, M., Crutcher, L., Aldape, K., et al. (2008). Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: Case study. Neuro-Oncology, 10(1), 98–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schartner, J. M., Hagar, A. R., Van Handel, M., Zhang, L., Nadkarni, N., & Badie, B. (2005). Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia, 51(4), 279–285.

    Article  PubMed  Google Scholar 

  40. Stevens, A., Kloter, I., & Roggendorf, W. (1988). Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer, 61(4), 738–743.

    Article  CAS  PubMed  Google Scholar 

  41. Didenko, V. V., Ngo, H. N., Minchew, C., & Baskin, D. S. (2002). Apoptosis of T lymphocytes invading glioblastomas multiforme: A possible tumor defense mechanism. Journal of Neurosurgery, 96(3), 580–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wischhusen, J., Friese, M. A., Mittelbronn, M., Meyermann, R., & Weller, M. (2005). HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: Implications for immune escape in vivo. Journal of Neuropathology and Experimental Neurology, 64(6), 523–528.

    Article  CAS  PubMed  Google Scholar 

  43. Wiendl, H., Mitsdoerffer, M., Hofmeister, V., Wischhusen, J., Bornemann, A., Meyermann, R., et al. (2002). A functional role of HLA-G expression in human gliomas: An alternative strategy of immune escape. Journal of Immunology, 168(9), 4772–4780.

    Article  CAS  Google Scholar 

  44. Huettner, C., Czub, S., Kerkau, S., Roggendorf, W., & Tonn, J. C. (1997). Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Research, 17(5A), 3217–3224.

    CAS  PubMed  Google Scholar 

  45. Dix, A. R., Brooks, W. H., Roszman, T. L., & Morford, L. A. (1999). Immune defects observed in patients with primary malignant brain tumors. Journal of Neuroimmunology, 100(1–2), 216–232.

    Article  CAS  PubMed  Google Scholar 

  46. Grossman, S. A., Ye, X., Lesser, G., Sloan, A., Carraway, H., Desideri, S., et al. (2011). Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clinical Cancer Research, 17(16), 5473–5480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chongsathidkiet, P., Jackson, C., Koyama, S., Loebel, F., Cui, X., Farber, S. H., et al. (2018). Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nature Medicine, 24(9), 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gustafson, M. P., Lin, Y., New, K. C., Bulur, P. A., O’Neill, B. P., Gastineau, D. A., et al. (2010). Systemic immune suppression in glioblastoma: The interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro-Oncology, 12(7), 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bloch, O., Crane, C. A., Kaur, R., Safaee, M., Rutkowski, M. J., & Parsa, A. T. (2013). Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clinical Cancer Research, 19(12), 3165–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iorgulescu, J. B., Gokhale, P. C., Speranza, M. C., Eschle, B. K., Poitras, M. J., Wilkens, M. K., et al. (2021). Concurrent dexamethasone limits the clinical benefit of immune checkpoint blockade in glioblastoma. Clinical Cancer Research, 27(1), 276–287.

    Article  CAS  PubMed  Google Scholar 

  51. Bouffet, E., Larouche, V., Campbell, B. B., Merico, D., de Borja, R., Aronson, M., et al. (2016). Immune checkpoint inhibition for Hypermutant glioblastoma Multiforme resulting from germline Biallelic mismatch repair deficiency. Journal of Clinical Oncology, 34(19), 2206–2211.

    Article  CAS  PubMed  Google Scholar 

  52. Johanns, T. M., Miller, C. A., Dorward, I. G., Tsien, C., Chang, E., Perry, A., et al. (2016). Immunogenomics of Hypermutated glioblastoma: A patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discovery, 6(11), 1230–1236.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viale, G., Trapani, D., & Curigliano, G. (2017). Mismatch repair deficiency as a predictive biomarker for immunotherapy efficacy. BioMed Research International, 2017, 4719194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kamiya-Matsuoka, C., Metrus, N. R., Shaw, K. R., Penas-Prado, M., Weathers, S.-P. S., Loghin, M. E., et al. (2018). The natural course of hypermutator gliomas. Journal of Clinical Oncology, 36(15_suppl), 2014-.

    Google Scholar 

  55. Omuro, A., Vlahovic, G., Lim, M., Sahebjam, S., Baehring, J., Cloughesy, T., et al. (2018). Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology, 20(5), 674–686.

    Article  CAS  PubMed  Google Scholar 

  56. Lim, M., Omuro, A., Vlahovic, G., Reardon, D. A., Sahebjam, S., Cloughesy, T., et al. (2017). 325ONivolumab (nivo) in combination with radiotherapy (RT) ± temozolomide (TMZ): Updated safety results from CheckMate 143 in pts with methylated or unmethylated newly diagnosed glioblastoma (GBM). Annals of Oncology, 28(suppl_5), mdx366-mdx.

    Google Scholar 

  57. Nayak, L., Molinaro, A. M., Peters, K., Clarke, J. L., Jordan, J. T., de Groot, J., et al. (2021). Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clinical Cancer Research, 27(4), 1048–1057.

    Article  CAS  PubMed  Google Scholar 

  58. Cloughesy, T. F., Mochizuki, A. Y., Orpilla, J. R., Hugo, W., Lee, A. H., Davidson, T. B., et al. (2019). Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 25(3), 477–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schalper, K. A., Rodriguez-Ruiz, M. E., Diez-Valle, R., Lopez-Janeiro, A., Porciuncula, A., Idoate, M. A., et al. (2019). Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nature Medicine, 25(3), 470–476.

    Article  CAS  PubMed  Google Scholar 

  60. Amaria, R. N., Reddy, S. M., Tawbi, H. A., Davies, M. A., Ross, M. I., Glitza, I. C., et al. (2018). Publisher correction: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nature Medicine, 24(12), 1942.

    Article  CAS  PubMed  Google Scholar 

  61. Blank, C. U., Rozeman, E. A., Fanchi, L. F., Sikorska, K., van de Wiel, B., Kvistborg, P., et al. (2018). Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nature Medicine, 24(11), 1655–1661.

    Article  CAS  PubMed  Google Scholar 

  62. Forde, P. M., Chaft, J. E., & Pardoll, D. M. (2018). Neoadjuvant PD-1 blockade in resectable lung cancer. The New England Journal of Medicine, 379(9), e14.

    Article  PubMed  Google Scholar 

  63. Larkin, J., Hodi, F. S., & Wolchok, J. D. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(13), 1270–1271.

    Article  PubMed  Google Scholar 

  64. Hodges, T. R., Ott, M., Xiu, J., Gatalica, Z., Swensen, J., Zhou, S., et al. (2017). Mutational burden, immune checkpoint expression, and mismatch repair in glioma: Implications for immune checkpoint immunotherapy. Neuro-Oncology, 19(8), 1047–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McGranahan, T., Li, G., & Nagpal, S. (2017). History and current state of immunotherapy in glioma and brain metastasis. Therapeutic Advances in Medical Oncology, 9(5), 347–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dunn, G. P., Fecci, P. E., & Curry, W. T. (2012). Cancer immunoediting in malignant glioma. Neurosurgery, 71(2), 201–222; discussion 22–3.

    Article  PubMed  Google Scholar 

  67. Nduom, E. K., Weller, M., & Heimberger, A. B. (2015). Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology, 17(Suppl 7), vii9–vii14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wainwright, D. A., Sengupta, S., Han, Y., & Lesniak, M. S. (2011). Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-Oncology, 13(12), 1308–1323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lampson, L. A. (2011). Monoclonal antibodies in neuro-oncology: Getting past the blood-brain barrier. MAbs, 3(2), 153–160.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gerstner, E. R., & Fine, R. L. (2007). Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: Establishing a treatment paradigm. Journal of Clinical Oncology, 25(16), 2306–2312.

    Article  PubMed  Google Scholar 

  71. Ou, A., Yung, W. K. A., & Majd, N. (2020). Molecular mechanisms of treatment resistance in glioblastoma. International Journal of Molecular Sciences, 22(1).

    Google Scholar 

  72. Desai, R., Suryadevara, C. M., Batich, K. A., Farber, S. H., Sanchez-Perez, L., & Sampson, J. H. (2016). Emerging immunotherapies for glioblastoma. Expert Opinion on Emerging Drugs, 21(2), 133–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heimberger, A. B., Suki, D., Yang, D., Shi, W., & Aldape, K. (2005). The natural history of EGFR and EGFRvIII in glioblastoma patients. Journal of Translational Medicine, 3, 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Weller, M., Butowski, N., Tran, D. D., Recht, L. D., Lim, M., Hirte, H., et al. (2017). Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. The Lancet Oncology, 18(10), 1373–1385.

    Article  CAS  PubMed  Google Scholar 

  75. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al. (2009). IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine, 360(8), 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schumacher, T., Bunse, L., Pusch, S., Sahm, F., Wiestler, B., Quandt, J., et al. (2014). A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 512(7514), 324–327.

    Article  CAS  PubMed  Google Scholar 

  78. Pellegatta, S., Valletta, L., Corbetta, C., Patane, M., Zucca, I., Riccardi Sirtori, F., et al. (2015). Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathologica Communications, 3, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Michael Platten, D. S., Bunse, L., Wick, A., Bunse, T., Riehl, D., Green, E., Sanghvi, K., Karapanagiotou-Schenkel, I., Harting, I., Sahm, F., Steinbach, J., Weyerbrock, A., Hense, J., Misch, M., Krex, D., Stevanovic, S., Tabatabai, G., von Deimling, A., Schmitt, M., & Wick, W. (2018). ATIM-33. NOA-16: A first-in-man multicenter phase I clinical trial of the German neurooncology working group evaluating a mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas. Neuro-Oncology, 20(6), vi8–vi9.

    Article  PubMed Central  Google Scholar 

  80. Rampling, R., Peoples, S., Mulholland, P. J., James, A., Al-Salihi, O., Twelves, C. J., et al. (2016). A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clinical Cancer Research, 22(19), 4776–4785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Migliorini, D., Dutoit, V., Allard, M., Hallez, N. G., Marinari, E., Widmer, V., et al. (2019). Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro-Oncology.

    Google Scholar 

  82. Keskin, D. B., Anandappa, A. J., Sun, J., Tirosh, I., Mathewson, N. D., Li, S., et al. (2019). Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 565(7738), 234–239.

    Article  CAS  PubMed  Google Scholar 

  83. Baratta, M. G. (2019). Glioblastoma is ‘hot’ for personalized vaccines. Nature Reviews. Cancer, 19(3), 129.

    Article  CAS  PubMed  Google Scholar 

  84. Hilf, N., Kuttruff-Coqui, S., Frenzel, K., Bukur, V., Stevanovic, S., Gouttefangeas, C., et al. (2019). Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 565(7738), 240–245.

    Article  CAS  PubMed  Google Scholar 

  85. Graner, M. W., & Bigner, D. D. (2005). Chaperone proteins and brain tumors: Potential targets and possible therapeutics. Neuro-Oncology, 7(3), 260–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ampie, L., Choy, W., Lamano, J. B., Fakurnejad, S., Bloch, O., & Parsa, A. T. (2015). Heat shock protein vaccines against glioblastoma: From bench to bedside. Journal of Neuro-Oncology, 123(3), 441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bloch, O., Crane, C. A., Fuks, Y., Kaur, R., Aghi, M. K., Berger, M. S., et al. (2014). Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro-Oncology, 16(2), 274–279.

    Article  CAS  PubMed  Google Scholar 

  88. Ahluwalia, M. S., Reardon, D. A., Abad, A. P., Curry, W. T., Wong, E. T., Belal, A., et al. (2019). SurVaxM with standard therapy in newly diagnosed glioblastoma: Phase II trial update. Journal of Clinical Oncology, 37(15_suppl), 2016-.

    Google Scholar 

  89. Ardon, H., Van Gool, S. W., Verschuere, T., Maes, W., Fieuws, S., Sciot, R., et al. (2012). Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: Results of the HGG-2006 phase I/II trial. Cancer Immunology, Immunotherapy, 61(11), 2033–2044.

    Article  CAS  PubMed  Google Scholar 

  90. Liau, L. M., Ashkan, K., Tran, D. D., Campian, J. L., Trusheim, J. E., Cobbs, C. S., et al. (2018). First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. Journal of Translational Medicine, 16(1), 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liau, L. M., Black, K. L., Martin, N. A., Sykes, S. N., Bronstein, J. M., Jouben-Steele, L., et al. (2000). Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report. Neurosurgical Focus, 9(6), e8.

    Article  CAS  PubMed  Google Scholar 

  92. Jena, B., Dotti, G., & Cooper, L. J. (2010). Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood, 116(7), 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maher, J. (2014). Clinical immunotherapy of B-cell malignancy using CD19-targeted CAR T-cells. Current Gene Therapy, 14(1), 35–43.

    Article  CAS  PubMed  Google Scholar 

  94. Knochelmann, H. M., Smith, A. S., Dwyer, C. J., Wyatt, M. M., Mehrotra, S., & Paulos, C. M. (2018). CAR T cells in solid tumors: Blueprints for building effective therapies. Frontiers in Immunology, 9, 1740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Brown, C. E., Alizadeh, D., Starr, R., Weng, L., Wagner, J. R., Naranjo, A., et al. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy. The New England Journal of Medicine, 375(26), 2561–2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O’Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., et al. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 9(399).

    Google Scholar 

  97. Ahmed, N., Salsman, V. S., Kew, Y., Shaffer, D., Powell, S., Zhang, Y. J., et al. (2010). HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clinical Cancer Research, 16(2), 474–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahmed, N., Brawley, V., Hegde, M., Bielamowicz, K., Kalra, M., Landi, D., et al. (2017). HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation TrialHER2-specific CAR-modified virus-specific T cells for progressive GlioblastomaHER2-specific CAR-modified virus-specific T cells for progressive glioblastoma. JAMA Oncology, 3(8), 1094–1101.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Weathers, S. P., Penas-Prado, M., Pei, B. L., Ling, X., Kassab, C., Banerjee, P., et al. (2020). Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: Results from a phase I/II trial. Clinical Cancer Research, 26(14), 3565–3577.

    Article  CAS  PubMed  Google Scholar 

  100. John, L. B., Devaud, C., Duong, C. P., Yong, C. S., Beavis, P. A., Haynes, N. M., et al. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clinical Cancer Research, 19(20), 5636–5646.

    Article  CAS  PubMed  Google Scholar 

  101. Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. Science, 331(6013), 44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nayyar, G., Chu, Y., & Cairo, M. S. (2019). Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Frontiers in Oncology, 9, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ishikawa, E., Tsuboi, K., Saijo, K., Harada, H., Takano, S., Nose, T., et al. (2004). Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Research, 24(3b), 1861–1871.

    PubMed  Google Scholar 

  104. Majd, N., Rizk, M., Ericson, S., Grzegorzewski, K., Koppisetti, S., Zhu, J., et al. (2020). RTID-07. Human placental hematopoietic stem cell derived natural killer cells (CYNK-001) for treatment of recurrent glioblastoma. Neuro-Oncology, 22(Supplement_2), ii194–ii5.

    Article  Google Scholar 

  105. Jiang, H., McCormick, F., Lang, F. F., Gomez-Manzano, C., & Fueyo, J. (2006). Oncolytic adenoviruses as antiglioma agents. Expert Review of Anticancer Therapy, 6(5), 697–708.

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, H., & Fueyo, J. (2014). Healing after death: Antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology, 3(7), e947872.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Desjardins, A., Gromeier, M., Herndon, J. E., 2nd, Beaubier, N., Bolognesi, D. P., Friedman, A. H., et al. (2018). Recurrent glioblastoma treated with recombinant poliovirus. The New England Journal of Medicine, 379(2), 150–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cloughesy, T. F., Petrecca, K., Walbert, T., Butowski, N., Salacz, M., Perry, J., et al. (2020). Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: A randomized clinical trial. JAMA Oncology, 6(12), 1939–1946.

    Article  PubMed  Google Scholar 

  109. Lang, F. F., Conrad, C., Gomez-Manzano, C., Yung, W. K. A., Sawaya, R., Weinberg, J. S., et al. (2018). Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. Journal of Clinical Oncology, 36(14), 1419–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perez, O. D., Logg, C. R., Hiraoka, K., Diago, O., Burnett, R., Inagaki, A., et al. (2012). Design and selection of Toca 511 for clinical use: Modified retroviral replicating vector with improved stability and gene expression. Molecular Therapy, 20(9), 1689–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cloughesy, T. F., Landolfi, J., Vogelbaum, M. A., Ostertag, D., Elder, J. B., Bloomfield, S., et al. (2018). Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro-Oncology, 20(10), 1383–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chiocca, E. A., Nassiri, F., Wang, J., Peruzzi, P., & Zadeh, G. (2019). Viral and other therapies for recurrent glioblastoma: Is a 24-month durable response unusual? Neuro-Oncology, 21(1), 14–25.

    Article  CAS  PubMed  Google Scholar 

  113. Harrison, R. A., Anderson, M. D., Cachia, D., Kamiya-Matsuoka, C., Weathers, S. S., O’Brien, B. J., et al. (2019). Clinical trial participation of patients with glioblastoma at The University of Texas MD Anderson Cancer Center. European Journal of Cancer, 112, 83–93.

    Article  PubMed  Google Scholar 

  114. Chiocca, E. A., Abbed, K. M., Tatter, S., Louis, D. N., Hochberg, F. H., Barker, F., et al. (2004). A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Molecular Therapy, 10(5), 958–966.

    Article  CAS  PubMed  Google Scholar 

  115. Prins, R. M., Soto, H., Konkankit, V., Odesa, S. K., Eskin, A., Yong, W. H., et al. (2011). Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clinical Cancer Research, 17(6), 1603–1615.

    Article  CAS  PubMed  Google Scholar 

  116. Yu, J. S., Liu, G., Ying, H., Yong, W. H., Black, K. L., & Wheeler, C. J. (2004). Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Research, 64(14), 4973–4979.

    Article  CAS  PubMed  Google Scholar 

  117. Yamanaka, R., Abe, T., Yajima, N., Tsuchiya, N., Homma, J., Kobayashi, T., et al. (2003). Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: Results of a clinical phase I/II trial. British Journal of Cancer, 89(7), 1172–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhai, L., Lauing, K. L., Chang, A. L., Dey, M., Qian, J., Cheng, Y., et al. (2015). The role of IDO in brain tumor immunotherapy. Journal of Neuro-Oncology, 123(3), 395–403.

    Article  CAS  PubMed  Google Scholar 

  119. Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., et al. (2002). T cell apoptosis by tryptophan catabolism. Cell Death and Differentiation, 9(10), 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  120. Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., & Yu, J. (2015). TGF-beta signaling and its targeting for glioma treatment. American Journal of Cancer Research, 5(3), 945–955.

    PubMed  PubMed Central  Google Scholar 

  121. Bogdahn, U., Hau, P., Stockhammer, G., Venkataramana, N. K., Mahapatra, A. K., Suri, A., et al. (2011). Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro-Oncology, 13(1), 132–142.

    Article  CAS  PubMed  Google Scholar 

  122. den Hollander, M. W., Bensch, F., Glaudemans, A. W. J. M., Enting, R. H., Bunskoek, S., Munnink, T. H. O., et al. (2013). 89zr-GC1008 PET imaging and GC1008 treatment of recurrent glioma patients. Journal of Clinical Oncology, 31(15_suppl), 2050-.

    Google Scholar 

  123. Rodon, J., Carducci, M. A., Sepulveda-Sanchez, J. M., Azaro, A., Calvo, E., Seoane, J., et al. (2015). First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clinical Cancer Research, 21(3), 553–560.

    Article  CAS  PubMed  Google Scholar 

  124. Roy, L. O., Poirier, M. B., & Fortin, D. (2018). Differential expression and clinical significance of transforming growth factor-beta isoforms in GBM tumors. International Journal of Molecular Sciences, 19(4).

    Google Scholar 

  125. Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19(10), 1264–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Butowski, N., Colman, H., De Groot, J. F., Omuro, A. M., Nayak, L., Wen, P. Y., et al. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 18(4), 557–564.

    Article  PubMed  Google Scholar 

  127. Goldberg, M. V., & Drake, C. G. (2011). LAG-3 in cancer immunotherapy. Current Topics in Microbiology and Immunology, 344, 269–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Harris-Bookman, S., Mathios, D., Martin, A. M., Xia, Y., Kim, E., Xu, H., et al. (2018). Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. International Journal of Cancer, 143(12), 3201–3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lim, M., Ye, X., Piotrowski, A. F., Desai, A. S., Ahluwalia, M. S., Walbert, T., et al. (2019). Updated phase I trial of anti-LAG-3 or anti-CD137 alone and in combination with anti-PD-1 in patients with recurrent GBM. Journal of Clinical Oncology, 37(15_suppl), 2017-.

    Google Scholar 

  130. Pollok, K. E., Kim, Y. J., Zhou, Z., Hurtado, J., Kim, K. K., Pickard, R. T., et al. (1993). Inducible T cell antigen 4-1BB. Analysis of expression and function. Journal of Immunology, 150(3), 771–781.

    Article  CAS  Google Scholar 

  131. Pilie, P. G., Gay, C. M., Byers, L. A., O’Connor, M. J., & Yap, T. A. (2019). PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clinical Cancer Research, 25(13), 3759–3771.

    Article  CAS  PubMed  Google Scholar 

  132. Majd, N., Yap, T. A., Yung, W. K. A., & de Groot, J. (2020). The promise of poly(ADP-ribose) polymerase (PARP) inhibitors in gliomas. Journal of Immunotherapy and Precision Oncology, 3(4), 157–164.

    Article  Google Scholar 

  133. Majd, N. K., Yap, T. A., Koul, D., Balasubramaniyan, V., Li, X., Khan, S., et al. (2021). The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-oncology Advances, 3(1), vdab015.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820.

    Article  PubMed  Google Scholar 

  135. Louis, D. N., Ellison, D. W., Brat, D. J., Aldape, K., Capper, D., Hawkins, C., et al. (2019). cIMPACT-NOW: A practical summary of diagnostic points from round 1 updates. Brain Pathology, 29(4), 469–472.

    PubMed  PubMed Central  Google Scholar 

  136. Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., et al. (2019). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology, 21(Supplement_5), v1–v100.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Marabelle, A., Le, D. T., Ascierto, P. A., Di Giacomo, A. M., De Jesus-Acosta, A., Delord, J. P., et al. (2020). Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. Journal of Clinical Oncology, 38(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  138. Naing, A., Meric-Bernstam, F., Stephen, B., Karp, D. D., Hajjar, J., Rodon Ahnert, J., et al. (2020). Phase 2 study of pembrolizumab in patients with advanced rare cancers. Journal for Immunotherapy of Cancer, 8(1), e000347.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lloyd, R. V., Osamura, R. Y., Klöppel, G., & Rosai, J. (Eds.). (2017). WHO classification of tumours of endocrine organs (4th ed.). IARC Press.

    Google Scholar 

  140. Daly, A. F., Tichomirowa, M. A., & Beckers, A. (2009). The epidemiology and genetics of pituitary adenomas. Best Practice & Research. Clinical Endocrinology & Metabolism, 23(5), 543–554.

    Article  CAS  Google Scholar 

  141. Lin, A. L., Jonsson, P., Tabar, V., Yang, T. J., Cuaron, J., Beal, K., et al. (2018). Marked response of a hypermutated ACTH-secreting pituitary carcinoma to Ipilimumab and Nivolumab. The Journal of Clinical Endocrinology & Metabolism, 103(10), 3925–3930.

    Article  Google Scholar 

  142. Duhamel, C., Ilie, M. D., Salle, H., Nassouri, A. S., Gaillard, S., Deluche, E., et al. (2020). Immunotherapy in corticotroph and lactotroph aggressive tumors and carcinomas: Two case reports and a review of the literature. Journal of Personalized Medicine, 10(3).

    Google Scholar 

  143. Majd, N., Waguespack, S. G., Janku, F., Fu, S., Penas-Prado, M., Xu, M., et al. (2020). Efficacy of pembrolizumab in patients with pituitary carcinoma: Report of four cases from a phase II study. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  144. Pajtler, K. W., Witt, H., Sill, M., Jones, D. T. W., Hovestadt, V., Kratochwil, F., et al. (2015). Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell, 27(5), 728–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tapia Rico, G., Townsend, A., Price, T., & Patterson, K. (2020). Metastatic myxopapillary ependymoma treated with immunotherapy achieving durable response. BMJ Case Reports, 13(12), e236242.

    PubMed  Google Scholar 

  146. Clark, V. E., Erson-Omay, E. Z., Serin, A., Yin, J., Cotney, J., Ozduman, K., et al. (2013). Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339(6123), 1077–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Han, S. J., Reis, G., Kohanbash, G., Shrivastav, S., Magill, S. T., Molinaro, A. M., et al. (2016). Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. Journal of Neuro-Oncology, 130(3), 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dunn, I. F., Du, Z., Touat, M., Sisti, M. B., Wen, P. Y., Umeton, R., et al. (2018). Mismatch repair deficiency in high-grade meningioma: A rare but recurrent event associated with dramatic immune activation and clinical response to PD-1 blockade. JCO Precision Oncology, 2018.

    Google Scholar 

  149. Campbell, B. B., Light, N., Fabrizio, D., Zatzman, M., Fuligni, F., de Borja, R., et al. (2017). Comprehensive analysis of hypermutation in human cancer. Cell, 171(5), 1042-56.e10.

    Article  CAS  Google Scholar 

  150. Kabir, T. F., Kunos, C. A., Villano, J. L., & Chauhan, A. (2020). Immunotherapy for medulloblastoma: Current perspectives. Immunotargets and Therapy, 9, 57–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majd, N.K., Dasgupta, P.R., de Groot, J.F. (2021). Immunotherapy for Neuro-oncology. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_7

Download citation

Publish with us

Policies and ethics