Skip to main content

Machining Process Time Series Data Analysis with a Decision Support Tool

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Dynamic industrial data growth necessitates the development of several new concepts of these data analysis that will allow to select not only the right data, but also to apply appropriate methods in order to extract knowledge from them. For this purpose, the possible use of decision trees as a decision support tool for a machining process data analysis was discussed in this article. With the use of the generated decision rules, we identify parameters that affect the state of a blade (blunt, sharp). In consequence that makes it possible to predict its future state at specific values of the identified parameters. Decision trees enable the analyses of the importance of each variable for the dependent variable. This makes it possible to analyse how each individual parameter and the relationships between them affect the condition of a cutter blade. The results of variables importance for a decision tree analysis can be used to determine the most important input variables, while rejecting those which do not affect the condition of a cutter blade. The study offers some promising results. It is confirmed by the achieved prediction model quality indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Jonge, B.: Maintenance Optimization Based on Mathematical Modeling. University of Groningen, SOM Research School, Groningen, Holland (2017)

    Google Scholar 

  2. Yan, J., Meng, Y., Lei, L., Li, L.: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance. IEEE Access 5, 23484–23491 (2017)

    Article  Google Scholar 

  3. Valis, D., Mazurkiewicz, D., Forbelska, M.: Modelling of a transport belt degradation using state space model. In: Proceedings of the 2017 IEEE International Conference on Industrial Engineering & Engineering Management, pp. 949–953. IEEE, Singapore (2017)

    Google Scholar 

  4. Vališ, D., Mazurkiewicz, D.: Application of selected Levy processes for degradation modelling of long range mine belt using real-time data. Arch. Civil Mech. Eng. 18(4), 1430–1440 (2018)

    Article  Google Scholar 

  5. Varela, M.L.R., Putnik, G.D., Manupati, V.K., Rajyalakshmi, G., Trojanowska, J., Machado, J.: Integrated process planning and scheduling in networked manufacturing systems for I4.0: a review and framework proposal. Wireless Netw. 27(3), 1587–1599 (2019)

    Article  Google Scholar 

  6. Jasiulewicz-Kaczmarek, M., Żywica, P.: The concept of maintenance sustainability performance assessment by integrating balanced scorecard with non-additive fuzzy integral. Eksploatacja i Niezawodnosc – Maintenance Reliab. 20(4), 650–661 (2018)

    Article  Google Scholar 

  7. Kozłowski, E., Mazurkiewicz, D., Żabiński, T., Prucnal, S., Sęp, J.: Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodnosc - Maintenance Reliab. 21(4), 679–685 (2019)

    Article  Google Scholar 

  8. Borucka, A., Grzelak, M.: Application of logistic regression for production machinery efficiency evaluation. Appl. Sci. 9, 4770 (2019)

    Article  Google Scholar 

  9. Antosz, K., Paśko, Ł, Gola, A.: The use of intelligent systems to support the decision-making process in Lean Maintenance management. IFAC PapersOnLine 52(10), 148–153 (2019)

    Article  Google Scholar 

  10. Pavlenko, I., Trojanowska, J., Ivanov, V., Liaposhchenko, O.: Parameter identification of hydro-mechanical processes using artificial intelligence systems. Int. J. Mechatron. Appl. Mech. 5, 19–26 (2019)

    Google Scholar 

  11. Gareth, J., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning with applications with R. Springer, London (2013)

    Google Scholar 

  12. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    Google Scholar 

  13. Larose, D.T.: Discovering Knowledge From Data. Introduction to Data Mining. Scientific Publisher PWN, Warsaw (2013)

    Google Scholar 

  14. Costa, E.P., Lorena, A.C., Carvalho, A.C.P.L.F., Freitas, A.A.: A review of performance evaluation measures for hierarchical classifiers. In: Evaluation Methods for Machine Learning II: Papers from the AAAI-2007 Workshop, pp. 182–196. AAAI Press (2007)

    Google Scholar 

  15. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing classifiers. In: Proceedings of the ICML-1998, pp. 445–453. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  16. Powers, D.: Evaluation: from precision, recall and F-score to ROC, unforcedness, nakedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  17. Żabiński, T. Mączka, T., Kluska, J.: Industrial platform for rapid prototyping of intelligent diagnostic systems trends. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch P. (eds.) Advanced Intelligent Control, Optimization and Automation Polish Control Conference, Kraków, Poland, pp. 712–21. Springer, Heidelberg (2017) https://doi.org/10.1007/978-3-319-60699-6_69

  18. Charemza, W.W., Syczewska, E.M.: Joint application of the Dickey-Fuller and KPSS tests. Econ. Lett. 61(1), 17–21 (1998)

    Article  Google Scholar 

  19. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    MathSciNet  Google Scholar 

  20. Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)

    Article  MathSciNet  Google Scholar 

  21. Ljung, G.M., Box, G.E.P.: On a measure of lack of fit time series models. Biometrika 65(2), 297–303 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Antosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antosz, K., Mazurkiewicz, D., Kozłowski, E., Sęp, J., Żabiński, T. (2022). Machining Process Time Series Data Analysis with a Decision Support Tool. In: Machado, J., Soares, F., Trojanowska, J., Ottaviano, E. (eds) Innovations in Mechanical Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79165-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79165-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79164-3

  • Online ISBN: 978-3-030-79165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics