Skip to main content

5G Communications as “Enabler” for Smart Power Grids: The Case of the Smart5Grid Project

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops (AIAI 2021)

Abstract

The fast 5G deployment at global level influences a variety of vertical sectors and offers many opportunities for growth and innovation, drastically affecting modern economies. Among the major sectors where significant benefits are expected is the case of smart grid, where the management of energy demand is expected to become more efficient, leading to less investments. 5G inclusion and adaptation in smart grid will allow easier balance of energy load and reduction of electricity peaks, together with savings of energy cost. In the present work we introduce the innovative scope proposed by the Smart5Grid research project, aiming to complement contemporary energy distribution grids with access to 5G network resources through an open experimentation 5G platform and innovative Network Applications (NetApps). Smart5Grid administers four meaningful use cases for the energy vertical ecosystem, in order to demonstrate efficiency, resilience and elasticity provided by the 5G networks. In particular, each one among these use cases is presented and assessed as of its expected benefits and proposed novelties, based on the corresponding demonstration actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekanayake, J., Liyanage, K., Wu, J., Yokoyama, A., Jenkins, N.: Smart Grid: Technology and Applications. Wiley, Chichester (2012)

    Google Scholar 

  2. Bakken, D.: Smart Grids: Cloud, Communications, Open Source, and Automation. CRC Press, New York (2014)

    Google Scholar 

  3. Mourshed, M., et al.: Smart grid futures: perspectives on the integration of energy and ICT services. Energy Procedia 75, 1132–1137 (2015)

    Article  Google Scholar 

  4. Panajotovic, B., Jankovic, M., Odadzic, B.: ICT and smart grid. In: Proceedings of the TELSIKS 2011, pp. 118–121. IEEE (2011)

    Google Scholar 

  5. Kuroda, K., Ichimura, T., Matsufuji, Y., Yokoyama, R.: Key ICT solutions for realizing smart grid. In: Proceedings of the SGE 2012, pp. 1–8. IEEE (2012)

    Google Scholar 

  6. Rost, P., Banchs, A., Berberana, I., Reitbach, M., Doll, M., et al.: Mobile network architecture evolution toward 5G. IEEE Commun. Mag. 54(5), 84–91 (2016)

    Article  Google Scholar 

  7. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  8. Chochliouros, I.P., et al.: Business and market perspectives in 5G networks. In: Proceedings of the Joint 13th CTTE and 10th CMI Conference 2017, pp. 1–6. IEEE (2017)

    Google Scholar 

  9. International Energy Agency (IEA): Empowering Variable Renewables: Options for Flexible Electricity Systems. IEA, Paris (2008)

    Google Scholar 

  10. International Renewable Energy Agency (IRENA): Global Energy Transformation: A Roadmap to 2050. Irena, Abu Dhabi (2019)

    Google Scholar 

  11. Matinkhah, S.M., Shafik, W.: Smart grid empowered by 5G technology. In: Proceedings of the 2019 SGC, pp. 1–6. IEEE (2019)

    Google Scholar 

  12. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S., Rodrigues, J.J.P.C.: Fog computing for smart grid systems in the 5G environment: challenges and solutions. IEEE Wirel. Commun. 26(3), 47–53 (2019)

    Article  Google Scholar 

  13. Cosovic, M., Tsitsimelis, A., Vukobratovic, D., Matamoros, J., Anton-Haro, C.: 5G Mobile cellular networks: enabling distributed state estimation for smart grids. IEEE Commun. Mag. 55(10), 62–69 (2017)

    Article  Google Scholar 

  14. Li, W., Wu. Z., Zhang, P.: Research on 5G network slicing for digital power grid. In: Proceedings of the ICEICT 2020, pp. 679–682. IEEE (2020)

    Google Scholar 

  15. The 3rd Generation Partnership Project (3GPP): TS 22.261 V17.1.0: technical specification group services and system aspects; service requirements for the 5G system; Stage 1 (Release 17), December 2019

    Google Scholar 

  16. IHS Markit: 5G network slicing enabling smart grid: commercial feasibility analysis. Industry Report (2019). https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-enabling-smart-grid-commercial-feasibility-analysis-en.pdf?la=en

  17. Global System for Mobile Communications Association (GSMA): Smart grid powered by 5G SA-based network slicing (2020). https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/2_Powered-by-SA_Smart-Grid-5G-Network-Slicing_China-Telecom_GSMA_v2.0.pdf

  18. 5G-Infrastructure-Association (5G-IA): 5G and energy. Version 1.0. (5G-PPP White Paper on Energy Vertical sector), September 2015. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White_Paper-on-Energy-Vertical-Sector.pdf

  19. Leligou, H.C., Zahariadis, T., Sarakis, L., Tsampasis, E., Voulkidis, A., Velivassaki, T.E.: Smart grid: a demanding use case for 5G technologies. In: Proceedings of PerCom 2018, pp. 215–220. IEEE (2018)

    Google Scholar 

  20. Tabassum, H., Salehi, M., Hossain, E.: Mobility-aware analysis of 5G and B5G cellular networks: a tutorial (2018). https://arxiv.org/abs/1805.02719

  21. Smart5Grid Project (Grant Agreement No. 101016912). https://smart5grid.eu/

  22. NRG5 Project: Deliverable 1.2: NRG-5 reference architecture and functional decomposition, March (2018). http://www.nrg5.eu/wp-content/uploads/2019/01/Deliverable-D1.2-compressed.pdf

  23. Jha, A.V., Ghazali, A.N., Appasani, B., Mohanta, D.K.: Risk identification and risk assessment of communication networks in smart grid cyber-physical systems. In: Awad, A.I., Furnell, S., Paprzycki, M., Sharma, S.K. (eds.) Security in Cyber-Physical Systems. SSDC, vol. 339, pp. 217–253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67361-1_8

    Chapter  Google Scholar 

  24. Chochliouros, I.P., Spiliopoulou, A.S., Lazaridis, P., Dardamanis, A., Zaharis, Z., Kostopoulos, A.: Dynamic network slicing: challenges and opportunities. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. AICT, vol. 585, pp. 47–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49190-1_5

    Chapter  Google Scholar 

  25. Chochliouros, I.P., et al.: Putting intelligence in the network edge through NFV and Cloud computing: the SESAME approach. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 704–715. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_59

    Chapter  Google Scholar 

  26. Global System for Mobile Communications Alliance (GSMA): An introduction to 5G network slicing. GSMA, November 2017. https://www.gsma.com/futurenetworks/wp-content/uploads/2017/11/GSMA-An-Introduction-to-Network-Slicing.pdf

  27. Guo, Y., Wu, W., Zhang, B., Sun, S.: A distributed state for power systems incorporating linear and non-linera models. Int. J. Electr. Power Energy Syst. 64, 608–616 (2015)

    Article  Google Scholar 

  28. The 3rd Generation Partnership Project (3GPP): 3GPP TR 22.804 V16.3.0: Technical specification group services and system aspects; study on communication for automation in vertical domains (CAV) (Release 16), July 2020. https://www.3gpp.org/ftp/Specs/archive/22_series/22.804/

  29. European Telecommunications Standards Institute: ETSI GS NFV 002 V1.2.1 (2014-12): Network Functions Virtualisation (NFV); architectural framework, ETSI. https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf

  30. Madrigal, M., Uluski, R., Mensan Gaba, K.: Practical Guidance for Defining a Smart Grid Modernization Strategy. DC, World Bank, Washington (2017)

    Google Scholar 

  31. Brown, R.E.: Electric Power Distribution Reliability, 2nd edn. CRC Press, New York (2016)

    Google Scholar 

  32. Le, D.P., Bui, D.M., Ngo, C.C., Le, A.M.T.: FLISR approach for smart distribution networks using E-Terra Software - a case study. Energies 11(12), 3333 (2018)

    Article  Google Scholar 

  33. International Electrotechnical Commission (IEC): IEC 61850 Standard: Communication networks and systems for power utility automation. IEC https://webstore.iec.ch/publication/6028

  34. Kriger, C., Behardien, S., Retonda, J.: A detailed analysis of the GOOSE message structure in an IEC 61850 standard-based substation automation system. Int. J. Comput. Commun. Control 8(5), 708–721 (2013)

    Article  Google Scholar 

  35. Council of European Energy Regulators (CEER): CEER Benchmarking Report 6.1 on the Continuity of Electricity and Gas Supply (2018). https://www.ceer.eu/documents/104400/-/-/963153e6-2f42-78eb-22a4-06f1552dd34c

  36. Prettico, G., Flammini, M.G., Andreadou, N., Vitiello, S., Fulli, G., Masera, M.: Distribution system operators observatory 2018: overview of the electricity distribution system in Europe. European Commission, Joint Research Centre (2019)

    Google Scholar 

  37. Workers’ Compensation Board: Working safely around electricity (2014). https://www.casa-acsa.ca/wp-content/uploads/2014-11_Working_Safely_Around_Electricity.pdf

  38. Energy Safe Victoria: Electricity hazards safety guide - creating a safer state with electricity and gas: for emergency services workers (2018). https://esv.vic.gov.au/wp-content/uploads/2019/11/ElectricityHazardsSafetyGuide_LoRes.pdf

  39. European Parliament: European policies on climate and energy towards 2020, 2030 and 2050 (2019). https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf

  40. Nguyen, N., Mitra, J.: An analysis of the effects and dependency of wind power penetration on system frequency regulation. IEEE Trans. Sustain. Energ. 7(1), 354–363 (2015)

    Article  Google Scholar 

  41. Delille, G., François, B., Malarange, G.: Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energ. 3(4), 931–939 (2012)

    Article  Google Scholar 

  42. Kellner, T.: The network effect: the internet of electricity is coming and this little device is making it happen. Digital Grid (2019). https://www.ge.com/news/reports/the-network-effect-the-internet-of-electricity-is-coming-and-this-little-device-is-making-it-happen

  43. European Union Agency for Cybersecurity (ENISA): Communication network interdependencies in smart grids (2016)

    Google Scholar 

  44. Akhavan-Hejazi, H., Mohsenian-Rad, H.: Power systems big data analytics: an assessment of paradigm shift barriers and prospects. Energ. Rep. 4, 91–100 (2018)

    Article  Google Scholar 

  45. Ho, T.M., et al.: Next-generation wireless solutions for the smart factory, smart vehicles, the smart grid and smart cities (2019). https://arxiv.org/pdf/1907.10102.pdf

  46. International Energy Agency (IEA): Status of power system transformation 2019. Technology Report, May 2019

    Google Scholar 

  47. Phadke, A.G., Bi, T.: Phasor measurement units, WAMS, and their applications in protection and control of power systems. J. Mod. Power Sys. Clean Energ. 6(4), 619–629 (2018)

    Article  Google Scholar 

  48. Appasani, B., Mohanta, D.K.: A review on synchrophasor communication system: communication technologies, standards and applications. Prot. Control Mod. Power Sys. 3(1), 1–17 (2018)

    Article  Google Scholar 

  49. Zacharia, L., Asprou, M., Kyriakides, E.: Design of a data delay compensation technique based on a linear predictor for wide-area measurements. In: Proceedings of the 2016 IEEE PES General Meeting (PESGM), pp. 1–5. IEEE (2016)

    Google Scholar 

  50. Zacharia, L., Asprou, M., Kyriakides, E.: Measurement errors and delays on wide-area control based on IEEE Std C37.118.1-2011: impact and compensation. IEEE Sys. J. 14(1), 422–432 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been performed in the scope of the Smart5Grid European Research Project and has been supported by the Commission of the European Communities /5G-PPP/H2020, Grant Agreement No. 101016912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Chochliouros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Porcu, D. et al. (2021). 5G Communications as “Enabler” for Smart Power Grids: The Case of the Smart5Grid Project. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79157-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79156-8

  • Online ISBN: 978-3-030-79157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics