Skip to main content

Control of Wave Energy Converters

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1047 Accesses

Abstract

Energy from the ocean is one of the least exploited renewable and sustainable energy sources, and possesses an enormous amount of untapped energy. The harnessing of energy from the ocean can be accomplished by several methods such as salinity and temperature gradient, waves, currents, and tidal variations. Amidst all, the ocean waves are a highly promising form of energy. Ocean waves have a tremendous amount of energy that can be harvested to meet the increasing energy demand. There are several challenges in wave energy conversion, which include the corrosive environment, the constraints of the converters, untuned device performance for the incoming waves, and irregularities in waves and air velocity. These challenges affect the overall system performance and decrease the overall conversion efficiency. The solution for many of these problems is to tune the device according to the wave climate and a controlled operation of the system. As waves differ in height and period, an optimal control method can help improve the efficiency, performance, and power absorption of a wave energy converter (WEC). This chapter presents a review of various control schemes applied to wave energy devices to achieve higher efficiency. The actual efficiency of WEC in real-time is very less compared to theoretical efficiency which is obtained around 70–80%. This large efficiency gap is due to various stages involved in the wave energy conversion process. To achieve good overall efficiency an optimal design and control techniques need to be applied at different stages of WEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., et al. (2002). Wave energy in Europe: Current status and perspectives. Renewable and Sustainable Energy Reviews, 6, 405–431. https://doi.org/10.1016/S1364-0321(02)00009-6

    Article  Google Scholar 

  2. Sannasiraj, S. A., & Sundar, V. (2016). Assessment of wave energy potential and its harvesting approach along the Indian coast. Renewable Energy, 99, 398–409. https://doi.org/10.1016/j.renene.2016.07.017

    Article  Google Scholar 

  3. Falnes, J. (2007). A review of wave-energy extraction. Marine Structures, 20, 185–201. https://doi.org/10.1016/j.marstruc.2007.09.001

    Article  Google Scholar 

  4. Cruz, J. (2008). Ocean wave energy. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  5. Masuda, Y. (1986). Hydrodynamics of ocean wave-energy utilization. Springer. https://doi.org/10.1007/978-3-642-82666-5

  6. Korde, U. A. (2000). Control system applications in wave energy conversion. Proceedings Oceans, 3(2000), 1817–1824. https://doi.org/10.1109/OCEANS.2000.882202

    Article  Google Scholar 

  7. Marsh, G. (2009). Maximising the power of waves. Renewable Energy Focus, 10, 80–84. https://doi.org/10.1016/S1755-0084(09)70242-X

    Article  Google Scholar 

  8. Molinas, M., Skjervheim, O., Andreasen, P., Undeland, T., Hals, J., & Moan, T., et al. (2007). Power electronics as grid interface for actively controlled wave energy converters. In 2007 International Conference Clean Electrical Power, ICCEP ’07, 2007 (pp. 188–195). https://doi.org/10.1109/ICCEP.2007.384210

  9. Tedeschi, E., Carraro, M., Molinas, M., & Mattavelli, P. (2011). Effect of control strategies and power take-off efficiency on the power capture from sea waves. IEEE Transactions on Energy Conversion, 26, 1088–1098. https://doi.org/10.1109/TEC.2011.2164798

    Article  Google Scholar 

  10. Falcão, A. F. D. O. (2008). Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system. Ocean Engineering, 35, 358–366. https://doi.org/10.1016/j.oceaneng.2007.10.005

    Article  Google Scholar 

  11. Nunes, G., Valério, D., Beirão, P., Sá da Costa, J. (2011). Modelling and control of a wave energy converter. Renewable Energy, 36, 1913–1921. https://doi.org/10.1016/j.renene.2010.12.018

  12. Tedeschi, E., & Molinas, M. (2012). Tunable control strategy for wave energy converters with limited power takeoff rating. IEEE Transactions on Industrial Electronics, 59, 3838–3846. https://doi.org/10.1109/TIE.2011.2181131

    Article  Google Scholar 

  13. Korde, U. A. (1991). On the control of wave energy devices in multi-frequency waves. Applied Ocean Research, 13, 132–144. https://doi.org/10.1016/S0141-1187(05)80060-4

  14. Korde, U. A. (2002). Latching control of deep water wave energy devices using an active reference. Ocean Engineering, 29, 1343–1355. https://doi.org/10.1016/S0029-8018(01)00093-2

    Article  Google Scholar 

  15. Babarit, A., Guglielmi, M., & Clément, A. H. (2009). Declutching control of a wave energy converter. Ocean Engineering, 36, 1015–1024. https://doi.org/10.1016/j.oceaneng.2009.05.006

    Article  Google Scholar 

  16. Cordonnier, J., Gorintin, F., De Cagny, A., Clément, A. H., & Babarit, A. (2015). SEAREV: Case study of the development of a wave energy converter. Renewable Energy, 80, 40–52. https://doi.org/10.1016/j.renene.2015.01.061

  17. Babarit, A., & Clément, A. H. (2006). Optimal latching control of a wave energy device in regular and irregular waves. Applied Ocean Research, 28, 77–91. https://doi.org/10.1016/j.apor.2006.05.002

    Article  Google Scholar 

  18. Babarit, A., Duclos, G., & Clément, A. H. (2004). Comparison of latching control strategies for a heaving wave energy device in random sea. Applied Ocean Research, 26, 227–238. https://doi.org/10.1016/j.apor.2005.05.003

  19. Salter, S. H., Taylor, J. R. M., & Caldwell, N. J. (2002). Power conversion mechanisms for wave energy. Proceedings of the Institution of Mechanical Engineers Part M, 216, 1–27. https://doi.org/10.1243/147509002320382112

    Article  Google Scholar 

  20. Clement, A. H., & Babarit, A. (2012). Discrete control of resonant wave energy devices. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 370, 288–314. https://doi.org/10.1098/rsta.2011.0132

    Article  MathSciNet  MATH  Google Scholar 

  21. Korde, U. A. (1991). Development of a reactive control apparatus for a fixed two-dimensional oscillating water column wave energy device. Ocean Engineering, 18, 465–483. https://doi.org/10.1016/0029-8018(91)90026-M

    Article  Google Scholar 

  22. Montoya Andrade, D.-E. A., García Santana, A., de la Villa Jaén, A. (2012). Frequency-matching assessment under reactive control on wave energy converters. In Proceedings of the 4th International Conference in Ocean Engineering (ICOE 2012) (pp. 1–6).

    Google Scholar 

  23. Falcão, A. F. O., Justino, P. A. P., Henriques, J. C. C., & André, J. M. C. S. (2009). Reactive versus latching phase control of a two-body heaving wave energy converter. In Proceeding of the European Control Conference 2009 (pp. 1–6).

    Google Scholar 

  24. Falcão, A. F. d. O., & Justino, P. A. P. OWC wave energy devices with air flow control. Ocean Engineering, 26, 1275–95. https://doi.org/10.1016/S0029-8018(98)00075-4

  25. Falcão, a. F. D. O., Vieira, L. C., Justino, P. a. P., & André, J. M. C. S. (2003). By-pass air-valve control of an OWC wave power plant. Journal of Offshore Mechanics and Arctic Engineering, 125, 205. https://doi.org/10.1115/1.1576815

  26. Amundarain, M., Alberdi, M., Garrido, A. J., Garrido, I., & Maseda, J. (2010). Wave energy plants: Control strategies for avoiding the stalling behaviour in the Wells turbine. Renewable Energy, 35, 2639–2648. https://doi.org/10.1016/j.renene.2010.04.009

    Article  Google Scholar 

  27. Alberdi, M., Amundarain, M., Garrido, A. J., Garrido, I., & Maseda, F. J. (2011). Fault-ride-through capability of oscillating-water-column-based wave-power-generation plants equipped with doubly fed induction generator and airflow control. IEEE Transactions on Industrial Electronics, 58, 1501–1517. https://doi.org/10.1109/TIE.2010.2090831

    Article  Google Scholar 

  28. Alberdi, M., Amundarain, M., Garrido, A. J., Garrido, I., Casquero, O., & De la Sen, M. (2011). Complementary control of oscillating water column-based wave energy conversion plants to improve the instantaneous power output. IEEE Transactions on Energy Conversion, 26, 1021–1032. https://doi.org/10.1109/TEC.2011.2167332

    Article  Google Scholar 

  29. Kim, T. H., Setoguchi, T., Takao, M., Kaneko, K., & Santhakumar, S. (2002). Study of turbine with self-pitch-controlled blades for wave energy conversion. International Journal of Thermal Sciences, 41, 101–107. https://doi.org/10.1016/S1290-0729(01)01308-4

    Article  Google Scholar 

  30. Setoguchi, T., Raghunathan, S., Takao, M., & Kaneko, K. (1997). Air-Turbine with self-pitch-controlled blades for wave energy conversion (Estimation of performances in periodically oscillating flow). International Journal of Rotating Machinery, 3, 233–238. https://doi.org/10.1155/S1023621X97000213

    Article  Google Scholar 

  31. Justino, P. A. P., & Falcão, A. F. de O. (1999). Rotational speed control of an OWC wave power plant. Journal of Offshore Mechanics and Arctic Engineering, 121, 65. https://doi.org/10.1115/1.2830079.

  32. Falcao, A. F. de O. (2004). Stochastic modelling in wave power-equipment optimization: Maximum energy production versus maximum profit. Ocean Engineering, 31, 1407–1421. https://doi.org/10.1016/j.oceaneng.2004.03.004

  33. Portillo, J. C. C., Henriques, J. C. C., Falcão, A. F. O., Gomes, R. P. F., Gato, L. M. C. (2015). Theoretical and experimental investigation on latching and rotational speed control. Renewable Energies Offshore, 471–478.

    Google Scholar 

  34. Sarmento, A. J. N., Gato, L. M. C., & Falcão, A. F. O. (1990). Turbine-controlled wave energy absorption by oscillating water column devices. Ocean Engineering, 17, 481–497. https://doi.org/10.1016/0029-8018(90)90040-D

  35. Falcão, A. F. d. O. (2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24, 73–82. https://doi.org/10.1016/S0141-1187(02)00021-4

  36. Falcão, A. F. O., & Rodrigues, R. J. (2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24, 59–71. https://doi.org/10.1016/S0141-1187(02)00022-6

    Article  Google Scholar 

  37. Falcão, A. F. O., & Henriques, J. C. C. (2014). Model-prototype similarity of oscillating-water-column wave energy converters. International Journal of Marine Energy, 6, 18–34. https://doi.org/10.1016/j.ijome.2014.05.002

    Article  Google Scholar 

  38. Falcão, A. F. O., Henriques, J. C. C., & Gato, L. M. C. (2016). Air turbine optimization for a bottom-standing oscillating-water-column wave energy converter. Journal Ocean Engineering Marine Energy, 2, 459–472. https://doi.org/10.1007/s40722-016-0045-7

    Article  Google Scholar 

  39. Henriques, J. C. C., Gato, L. M. C., Falcão, A. F. O., Robles, E., & Faÿ, F. X. (2016). Latching control of a floating oscillating-water-column wave energy converter. Renewable Energy, 90, 229–241. https://doi.org/10.1016/j.renene.2015.12.065

    Article  Google Scholar 

  40. Henriques, J. C. C., Gato, L. M. C., Lemos, J. M., Gomes, R. P. F., & Falcao, A. F. (2016). Peak-power control of a grid-integrated oscillating water column wave energy converter. Energy, 109, 378–390. https://doi.org/10.1016/j.energy.2016.04.098

    Article  Google Scholar 

  41. Henriques, C., Kelly, J., Mueller, M., Faÿ, F., Abusara, M., & Sheng, W., et al. (2020). Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant. 146, 2766–2784. https://doi.org/10.1016/j.renene.2019.08.074

  42. Falcão, A. F. O., Henriques, J. C. C., & Gato, L. M. C. (2017). Rotational speed control and electrical rated power of an oscillating-water-column wave energy converter. Energy, 120, 253–261. https://doi.org/10.1016/j.energy.2016.11.078

    Article  Google Scholar 

  43. Henriques, J. C. C., Portillo, J. C. C., Sheng, W., Gato, L. M. C., & Falcão, A. F. O. (2019). Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study. Renewable and Sustainable Energy Reviews, 112, 571–589. https://doi.org/10.1016/j.rser.2019.05.010

    Article  Google Scholar 

  44. Tedd, J., Kofoed, J. P., Jasinski, M., Morris, A., Friis-Madsen, E., & Wisniewski, R., et al. (2007). Advanced control techniques for WEC wave dragon. In Proceeding of the 7th European Wave and Tidal Energy Conference (pp. 1–7).

    Google Scholar 

  45. Reza, C. M. F. S., Islam, M. D., & Mekhilef, S. (2014). A review of reliable and energy efficient direct torque controlled induction motor drives. Renewable and Sustainable Energy Reviews, 37, 919–932. https://doi.org/10.1016/j.rser.2014.05.067

    Article  Google Scholar 

  46. Merabet Boulouiha, H., Allali, A., Laouer, M., Tahri, A., Denaï, M., & Draou, A. (2015). Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system. Renewable Energy, 80, 140–152. https://doi.org/10.1016/j.renene.2015.01.065.

  47. Lagoun, M. S. (2014). A predictive power control of doubly fed induction generator for wave energy converter in irregular waves. In International Conference on Green Energy ICGE (pp. 26–31).

    Google Scholar 

  48. Xiang, J., Brooking, P. R. M., & Mueller, M. A. (2002). Control requirements of direct drive wave energy converters. In IEEE Region 10 international conference on computers, communications, control power engineering TENCOM ’02 (Vol. 3, pp. 2053–2056). https://doi.org/10.1109/TENCON.2002.1182746.

  49. Garrido, I., Garrido, A. J., Alberdi, M., Amundarain, M., & Barambones, O. (2013). Performance of an ocean energy conversion system with DFIG sensorless control. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/260514.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suchithra, R., Samad, A. (2022). Control of Wave Energy Converters. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics