Skip to main content

Optimization of an Impulse Turbine for Efficient Wave Energy Extraction

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

Abstract

Wave energy extracting devices such as an oscillating water column (OWC) in general have lower efficiency compared to other energy extracting techniques due to non-optimal design of various components. OWC is an empty vertical column housing an Wells or an impulse turbine. This chapter presents a detailed methodology in optimizing few design variables such as the number of guide vanes, number of rotor blades, guide vane angle with an objective to maximize efficiency. This is achieved by using a combination of low fidelity method (surrogate modelling) and high fidelity method (CFD simulation) which utilizes computational resources effectively. The relative overall mean efficiency increment taken over a wider flow coefficient range was approximately \(24\%\) while for the peak to peak comparison, the relative enhancement was \(28\%\). Flow dynamics have also been studied to understand the reason for enhancement in efficiency with the optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–9.

    Article  Google Scholar 

  2. Sovacool, B. K., Noel, L., Kester, J., & de Rubens, G. Z. (2018). Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden. Energy, 165, 532–542.

    Article  Google Scholar 

  3. Boyle, G. (2004). Renewable energy. Oxford University Press.

    Google Scholar 

  4. Khan, N., Kalair, A., Abas, N., & Haider. (2017). A review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable Energy Reviews, 72, 590–604.

    Google Scholar 

  5. Antonio, F. D. (2010). Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews, 14(3), 899–918.

    Article  Google Scholar 

  6. Evans, D. V. (1978). The oscillating water column wave-energy device. IMA Journal of Applied Mathematics, 22(4), 423–33.

    Article  Google Scholar 

  7. Maeda, H., Santhakumar, S., Setoguchi, T., Takao, M., Kinoue, Y., & Kaneko, K. (1999). Performance of an impulse turbine with fixed guide vanes for wave power conversion. Renewable Energy, 17(4), 533–47.

    Article  Google Scholar 

  8. Thakker, A., Khaleeq, HB., & Ansari, A. R. (2001). Numerical simulation of 0.6 m impulse turbine for wave power conversion under different flow conditions. In The Eleventh International Offshore and Polar Engineering Conference International Society of Offshore and Polar Engineers

    Google Scholar 

  9. Thakker, A., Hourigan, F. (2005). Computational fluid dynamics analysis of a 0.6 m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes. Renewable Energy, 30(9), 1387–1399.

    Google Scholar 

  10. Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics. New York: McGraw-Hill.

    Google Scholar 

  11. Badhurshah, R., Dudhgaonkar, P., Jalihal, P., & Samad, A. (2018). High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy. Renewable Energy, 121, 344–54.

    Article  Google Scholar 

  12. Thakker, A., & Dhanasekaran, T. S. (2004). Computed effects of tip clearance on performance of impulse turbine for wave energy conversion. Renewable Energy, 29(4), 529–47.

    Article  Google Scholar 

  13. Badhurshah, R., & Samad, A. (2015). Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion. Renewable Energy, 74, 749–60.

    Article  Google Scholar 

  14. Xiong, C., & Liu, Z. (2011). Numerical analysis on impulse turbine for OWC wave energy conversion. In 2011 Asia-Pacific Power and Energy Engineering Conference (pp. 1–5). IEEE

    Google Scholar 

  15. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley

    Google Scholar 

  16. Setoguchi, T., Santhakumar, S., Maeda, H., Takao, M., & Kaneko, K. (2001). A review of impulse turbines for wave energy conversion. Renewable Energy, 23, 261–292.

    Article  Google Scholar 

  17. McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61.

    Article  Google Scholar 

  18. Samad, A., & Kim, K. Y. (2008). Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy., 222(6), 599–611.

    Google Scholar 

  19. Goel, T., Haftka, R. T., Shyy, W., & Queipo, N. V. (2007). Ensemble of surrogates. Structural and Multidisciplinary Optimization, 33(3), 199–216.

    Article  Google Scholar 

  20. Koziel, S., Ciaurri, D. E., & Leifsson, L. (2011). Surrogate-based methods in Computational optimization, methods and algorithms (pp. 33–59). Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  21. Badhurshah, R., & Samad, A. (2014). Surrogate assisted design optimization of an air turbine. International Journal of Rotating Machinery.

    Google Scholar 

  22. He, D. K., Wang, F. L., & Mao, Z. Z. (2008). Hybrid genetic algorithm for economic dispatch with valve-point effect. Electric Power Systems Research., 78(4), 626–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badhurshah, R., Samad, A. (2022). Optimization of an Impulse Turbine for Efficient Wave Energy Extraction. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics